Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
import math | |
from typing import List, Tuple | |
import torch | |
from fvcore.nn import sigmoid_focal_loss_jit | |
from torch import Tensor, nn | |
from torch.nn import functional as F | |
from detectron2.config import configurable | |
from detectron2.layers import CycleBatchNormList, ShapeSpec, batched_nms, cat, get_norm | |
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou | |
from detectron2.utils.events import get_event_storage | |
from ..anchor_generator import build_anchor_generator | |
from ..backbone import Backbone, build_backbone | |
from ..box_regression import Box2BoxTransform, _dense_box_regression_loss | |
from ..matcher import Matcher | |
from .build import META_ARCH_REGISTRY | |
from .dense_detector import DenseDetector, permute_to_N_HWA_K # noqa | |
__all__ = ["RetinaNet"] | |
logger = logging.getLogger(__name__) | |
class RetinaNet(DenseDetector): | |
""" | |
Implement RetinaNet in :paper:`RetinaNet`. | |
""" | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
head: nn.Module, | |
head_in_features, | |
anchor_generator, | |
box2box_transform, | |
anchor_matcher, | |
num_classes, | |
focal_loss_alpha=0.25, | |
focal_loss_gamma=2.0, | |
smooth_l1_beta=0.0, | |
box_reg_loss_type="smooth_l1", | |
test_score_thresh=0.05, | |
test_topk_candidates=1000, | |
test_nms_thresh=0.5, | |
max_detections_per_image=100, | |
pixel_mean, | |
pixel_std, | |
vis_period=0, | |
input_format="BGR", | |
): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
head (nn.Module): a module that predicts logits and regression deltas | |
for each level from a list of per-level features | |
head_in_features (Tuple[str]): Names of the input feature maps to be used in head | |
anchor_generator (nn.Module): a module that creates anchors from a | |
list of features. Usually an instance of :class:`AnchorGenerator` | |
box2box_transform (Box2BoxTransform): defines the transform from anchors boxes to | |
instance boxes | |
anchor_matcher (Matcher): label the anchors by matching them with ground truth. | |
num_classes (int): number of classes. Used to label background proposals. | |
# Loss parameters: | |
focal_loss_alpha (float): focal_loss_alpha | |
focal_loss_gamma (float): focal_loss_gamma | |
smooth_l1_beta (float): smooth_l1_beta | |
box_reg_loss_type (str): Options are "smooth_l1", "giou", "diou", "ciou" | |
# Inference parameters: | |
test_score_thresh (float): Inference cls score threshold, only anchors with | |
score > INFERENCE_TH are considered for inference (to improve speed) | |
test_topk_candidates (int): Select topk candidates before NMS | |
test_nms_thresh (float): Overlap threshold used for non-maximum suppression | |
(suppress boxes with IoU >= this threshold) | |
max_detections_per_image (int): | |
Maximum number of detections to return per image during inference | |
(100 is based on the limit established for the COCO dataset). | |
pixel_mean, pixel_std: see :class:`DenseDetector`. | |
""" | |
super().__init__( | |
backbone, head, head_in_features, pixel_mean=pixel_mean, pixel_std=pixel_std | |
) | |
self.num_classes = num_classes | |
# Anchors | |
self.anchor_generator = anchor_generator | |
self.box2box_transform = box2box_transform | |
self.anchor_matcher = anchor_matcher | |
# Loss parameters: | |
self.focal_loss_alpha = focal_loss_alpha | |
self.focal_loss_gamma = focal_loss_gamma | |
self.smooth_l1_beta = smooth_l1_beta | |
self.box_reg_loss_type = box_reg_loss_type | |
# Inference parameters: | |
self.test_score_thresh = test_score_thresh | |
self.test_topk_candidates = test_topk_candidates | |
self.test_nms_thresh = test_nms_thresh | |
self.max_detections_per_image = max_detections_per_image | |
# Vis parameters | |
self.vis_period = vis_period | |
self.input_format = input_format | |
def from_config(cls, cfg): | |
backbone = build_backbone(cfg) | |
backbone_shape = backbone.output_shape() | |
feature_shapes = [backbone_shape[f] for f in cfg.MODEL.RETINANET.IN_FEATURES] | |
head = RetinaNetHead(cfg, feature_shapes) | |
anchor_generator = build_anchor_generator(cfg, feature_shapes) | |
return { | |
"backbone": backbone, | |
"head": head, | |
"anchor_generator": anchor_generator, | |
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.RETINANET.BBOX_REG_WEIGHTS), | |
"anchor_matcher": Matcher( | |
cfg.MODEL.RETINANET.IOU_THRESHOLDS, | |
cfg.MODEL.RETINANET.IOU_LABELS, | |
allow_low_quality_matches=True, | |
), | |
"pixel_mean": cfg.MODEL.PIXEL_MEAN, | |
"pixel_std": cfg.MODEL.PIXEL_STD, | |
"num_classes": cfg.MODEL.RETINANET.NUM_CLASSES, | |
"head_in_features": cfg.MODEL.RETINANET.IN_FEATURES, | |
# Loss parameters: | |
"focal_loss_alpha": cfg.MODEL.RETINANET.FOCAL_LOSS_ALPHA, | |
"focal_loss_gamma": cfg.MODEL.RETINANET.FOCAL_LOSS_GAMMA, | |
"smooth_l1_beta": cfg.MODEL.RETINANET.SMOOTH_L1_LOSS_BETA, | |
"box_reg_loss_type": cfg.MODEL.RETINANET.BBOX_REG_LOSS_TYPE, | |
# Inference parameters: | |
"test_score_thresh": cfg.MODEL.RETINANET.SCORE_THRESH_TEST, | |
"test_topk_candidates": cfg.MODEL.RETINANET.TOPK_CANDIDATES_TEST, | |
"test_nms_thresh": cfg.MODEL.RETINANET.NMS_THRESH_TEST, | |
"max_detections_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, | |
# Vis parameters | |
"vis_period": cfg.VIS_PERIOD, | |
"input_format": cfg.INPUT.FORMAT, | |
} | |
def forward_training(self, images, features, predictions, gt_instances): | |
# Transpose the Hi*Wi*A dimension to the middle: | |
pred_logits, pred_anchor_deltas = self._transpose_dense_predictions( | |
predictions, [self.num_classes, 4] | |
) | |
anchors = self.anchor_generator(features) | |
gt_labels, gt_boxes = self.label_anchors(anchors, gt_instances) | |
return self.losses(anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes) | |
def losses(self, anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes): | |
""" | |
Args: | |
anchors (list[Boxes]): a list of #feature level Boxes | |
gt_labels, gt_boxes: see output of :meth:`RetinaNet.label_anchors`. | |
Their shapes are (N, R) and (N, R, 4), respectively, where R is | |
the total number of anchors across levels, i.e. sum(Hi x Wi x Ai) | |
pred_logits, pred_anchor_deltas: both are list[Tensor]. Each element in the | |
list corresponds to one level and has shape (N, Hi * Wi * Ai, K or 4). | |
Where K is the number of classes used in `pred_logits`. | |
Returns: | |
dict[str, Tensor]: | |
mapping from a named loss to a scalar tensor storing the loss. | |
Used during training only. The dict keys are: "loss_cls" and "loss_box_reg" | |
""" | |
num_images = len(gt_labels) | |
gt_labels = torch.stack(gt_labels) # (N, R) | |
valid_mask = gt_labels >= 0 | |
pos_mask = (gt_labels >= 0) & (gt_labels != self.num_classes) | |
num_pos_anchors = pos_mask.sum().item() | |
get_event_storage().put_scalar("num_pos_anchors", num_pos_anchors / num_images) | |
normalizer = self._ema_update("loss_normalizer", max(num_pos_anchors, 1), 100) | |
# classification and regression loss | |
gt_labels_target = F.one_hot(gt_labels[valid_mask], num_classes=self.num_classes + 1)[ | |
:, :-1 | |
] # no loss for the last (background) class | |
loss_cls = sigmoid_focal_loss_jit( | |
cat(pred_logits, dim=1)[valid_mask], | |
gt_labels_target.to(pred_logits[0].dtype), | |
alpha=self.focal_loss_alpha, | |
gamma=self.focal_loss_gamma, | |
reduction="sum", | |
) | |
loss_box_reg = _dense_box_regression_loss( | |
anchors, | |
self.box2box_transform, | |
pred_anchor_deltas, | |
gt_boxes, | |
pos_mask, | |
box_reg_loss_type=self.box_reg_loss_type, | |
smooth_l1_beta=self.smooth_l1_beta, | |
) | |
return { | |
"loss_cls": loss_cls / normalizer, | |
"loss_box_reg": loss_box_reg / normalizer, | |
} | |
def label_anchors(self, anchors, gt_instances): | |
""" | |
Args: | |
anchors (list[Boxes]): A list of #feature level Boxes. | |
The Boxes contains anchors of this image on the specific feature level. | |
gt_instances (list[Instances]): a list of N `Instances`s. The i-th | |
`Instances` contains the ground-truth per-instance annotations | |
for the i-th input image. | |
Returns: | |
list[Tensor]: List of #img tensors. i-th element is a vector of labels whose length is | |
the total number of anchors across all feature maps (sum(Hi * Wi * A)). | |
Label values are in {-1, 0, ..., K}, with -1 means ignore, and K means background. | |
list[Tensor]: i-th element is a Rx4 tensor, where R is the total number of anchors | |
across feature maps. The values are the matched gt boxes for each anchor. | |
Values are undefined for those anchors not labeled as foreground. | |
""" | |
anchors = Boxes.cat(anchors) # Rx4 | |
gt_labels = [] | |
matched_gt_boxes = [] | |
for gt_per_image in gt_instances: | |
match_quality_matrix = pairwise_iou(gt_per_image.gt_boxes, anchors) | |
matched_idxs, anchor_labels = self.anchor_matcher(match_quality_matrix) | |
del match_quality_matrix | |
if len(gt_per_image) > 0: | |
matched_gt_boxes_i = gt_per_image.gt_boxes.tensor[matched_idxs] | |
gt_labels_i = gt_per_image.gt_classes[matched_idxs] | |
# Anchors with label 0 are treated as background. | |
gt_labels_i[anchor_labels == 0] = self.num_classes | |
# Anchors with label -1 are ignored. | |
gt_labels_i[anchor_labels == -1] = -1 | |
else: | |
matched_gt_boxes_i = torch.zeros_like(anchors.tensor) | |
gt_labels_i = torch.zeros_like(matched_idxs) + self.num_classes | |
gt_labels.append(gt_labels_i) | |
matched_gt_boxes.append(matched_gt_boxes_i) | |
return gt_labels, matched_gt_boxes | |
def forward_inference( | |
self, images: ImageList, features: List[Tensor], predictions: List[List[Tensor]] | |
): | |
pred_logits, pred_anchor_deltas = self._transpose_dense_predictions( | |
predictions, [self.num_classes, 4] | |
) | |
anchors = self.anchor_generator(features) | |
results: List[Instances] = [] | |
for img_idx, image_size in enumerate(images.image_sizes): | |
scores_per_image = [x[img_idx].sigmoid_() for x in pred_logits] | |
deltas_per_image = [x[img_idx] for x in pred_anchor_deltas] | |
results_per_image = self.inference_single_image( | |
anchors, scores_per_image, deltas_per_image, image_size | |
) | |
results.append(results_per_image) | |
return results | |
def inference_single_image( | |
self, | |
anchors: List[Boxes], | |
box_cls: List[Tensor], | |
box_delta: List[Tensor], | |
image_size: Tuple[int, int], | |
): | |
""" | |
Single-image inference. Return bounding-box detection results by thresholding | |
on scores and applying non-maximum suppression (NMS). | |
Arguments: | |
anchors (list[Boxes]): list of #feature levels. Each entry contains | |
a Boxes object, which contains all the anchors in that feature level. | |
box_cls (list[Tensor]): list of #feature levels. Each entry contains | |
tensor of size (H x W x A, K) | |
box_delta (list[Tensor]): Same shape as 'box_cls' except that K becomes 4. | |
image_size (tuple(H, W)): a tuple of the image height and width. | |
Returns: | |
Same as `inference`, but for only one image. | |
""" | |
pred = self._decode_multi_level_predictions( | |
anchors, | |
box_cls, | |
box_delta, | |
self.test_score_thresh, | |
self.test_topk_candidates, | |
image_size, | |
) | |
keep = batched_nms( # per-class NMS | |
pred.pred_boxes.tensor, pred.scores, pred.pred_classes, self.test_nms_thresh | |
) | |
return pred[keep[: self.max_detections_per_image]] | |
class RetinaNetHead(nn.Module): | |
""" | |
The head used in RetinaNet for object classification and box regression. | |
It has two subnets for the two tasks, with a common structure but separate parameters. | |
""" | |
def __init__( | |
self, | |
*, | |
input_shape: List[ShapeSpec], | |
num_classes, | |
num_anchors, | |
conv_dims: List[int], | |
norm="", | |
prior_prob=0.01, | |
): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
input_shape (List[ShapeSpec]): input shape | |
num_classes (int): number of classes. Used to label background proposals. | |
num_anchors (int): number of generated anchors | |
conv_dims (List[int]): dimensions for each convolution layer | |
norm (str or callable): | |
Normalization for conv layers except for the two output layers. | |
See :func:`detectron2.layers.get_norm` for supported types. | |
prior_prob (float): Prior weight for computing bias | |
""" | |
super().__init__() | |
self._num_features = len(input_shape) | |
if norm == "BN" or norm == "SyncBN": | |
logger.info( | |
f"Using domain-specific {norm} in RetinaNetHead with len={self._num_features}." | |
) | |
bn_class = nn.BatchNorm2d if norm == "BN" else nn.SyncBatchNorm | |
def norm(c): | |
return CycleBatchNormList( | |
length=self._num_features, bn_class=bn_class, num_features=c | |
) | |
else: | |
norm_name = str(type(get_norm(norm, 32))) | |
if "BN" in norm_name: | |
logger.warning( | |
f"Shared BatchNorm (type={norm_name}) may not work well in RetinaNetHead." | |
) | |
cls_subnet = [] | |
bbox_subnet = [] | |
for in_channels, out_channels in zip( | |
[input_shape[0].channels] + list(conv_dims), conv_dims | |
): | |
cls_subnet.append( | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
) | |
if norm: | |
cls_subnet.append(get_norm(norm, out_channels)) | |
cls_subnet.append(nn.ReLU()) | |
bbox_subnet.append( | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
) | |
if norm: | |
bbox_subnet.append(get_norm(norm, out_channels)) | |
bbox_subnet.append(nn.ReLU()) | |
self.cls_subnet = nn.Sequential(*cls_subnet) | |
self.bbox_subnet = nn.Sequential(*bbox_subnet) | |
self.cls_score = nn.Conv2d( | |
conv_dims[-1], num_anchors * num_classes, kernel_size=3, stride=1, padding=1 | |
) | |
self.bbox_pred = nn.Conv2d( | |
conv_dims[-1], num_anchors * 4, kernel_size=3, stride=1, padding=1 | |
) | |
# Initialization | |
for modules in [self.cls_subnet, self.bbox_subnet, self.cls_score, self.bbox_pred]: | |
for layer in modules.modules(): | |
if isinstance(layer, nn.Conv2d): | |
torch.nn.init.normal_(layer.weight, mean=0, std=0.01) | |
torch.nn.init.constant_(layer.bias, 0) | |
# Use prior in model initialization to improve stability | |
bias_value = -(math.log((1 - prior_prob) / prior_prob)) | |
torch.nn.init.constant_(self.cls_score.bias, bias_value) | |
def from_config(cls, cfg, input_shape: List[ShapeSpec]): | |
num_anchors = build_anchor_generator(cfg, input_shape).num_cell_anchors | |
assert ( | |
len(set(num_anchors)) == 1 | |
), "Using different number of anchors between levels is not currently supported!" | |
num_anchors = num_anchors[0] | |
return { | |
"input_shape": input_shape, | |
"num_classes": cfg.MODEL.RETINANET.NUM_CLASSES, | |
"conv_dims": [input_shape[0].channels] * cfg.MODEL.RETINANET.NUM_CONVS, | |
"prior_prob": cfg.MODEL.RETINANET.PRIOR_PROB, | |
"norm": cfg.MODEL.RETINANET.NORM, | |
"num_anchors": num_anchors, | |
} | |
def forward(self, features: List[Tensor]): | |
""" | |
Arguments: | |
features (list[Tensor]): FPN feature map tensors in high to low resolution. | |
Each tensor in the list correspond to different feature levels. | |
Returns: | |
logits (list[Tensor]): #lvl tensors, each has shape (N, AxK, Hi, Wi). | |
The tensor predicts the classification probability | |
at each spatial position for each of the A anchors and K object | |
classes. | |
bbox_reg (list[Tensor]): #lvl tensors, each has shape (N, Ax4, Hi, Wi). | |
The tensor predicts 4-vector (dx,dy,dw,dh) box | |
regression values for every anchor. These values are the | |
relative offset between the anchor and the ground truth box. | |
""" | |
assert len(features) == self._num_features | |
logits = [] | |
bbox_reg = [] | |
for feature in features: | |
logits.append(self.cls_score(self.cls_subnet(feature))) | |
bbox_reg.append(self.bbox_pred(self.bbox_subnet(feature))) | |
return logits, bbox_reg | |