Spaces:
Runtime error
Runtime error
File size: 6,544 Bytes
dc08f88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import os
import pathlib
import subprocess
import gradio as gr
from model import Model
# if os.getenv("SYSTEM") == "spaces":
# import mim
# mim.uninstall("mmcv-full", confirm_yes=True)
# mim.install("mmcv-full==1.5.2", is_yes=True)
# with open("patch") as f:
# subprocess.run("patch -p1".split(), cwd="Text2Human", stdin=f)
DESCRIPTION = """# Text2Human
- Algorthm is original from <a href="https://github.com/yumingj/Text2Human">https://github.com/yumingj/Text2Human</a> made by <a href="https://huggingface.co/spaces/hysts/Text2Human">@hysts</a>. Thanks for it's awesome work.
- By varying seeds, you can sample different human images under the same pose, shape description, and texture description. The larger the sample steps, the better quality of the generated images. (The default value of sample steps is 256 in the original repo.)
- Label image generation step can be skipped. However, in that case, the input label image must be 512x256 in size and must contain only the specified colors.
"""
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=str, default="cpu")
parser.add_argument("--theme", type=str)
parser.add_argument("--share", action="store_true")
parser.add_argument("--port", type=int)
parser.add_argument("--disable-queue", dest="enable_queue", action="store_false")
return parser.parse_args()
# def set_example_image(example: list) -> dict:
# return gr.Image.update(value=example[0])
def set_example_image(example: list) -> dict:
print(example)
return gr.update(value=example[0]["path"])
# def set_example_text(example: list) -> dict:
# return gr.Textbox.change(value=example[0])
def set_example_text(example: list) -> dict:
# Update the Textbox with the example text
return gr.update(value=example[0])
def main():
args = parse_args()
print(args.device)
model = Model(args.device)
with gr.Blocks(theme=args.theme, css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Pose Image", type="pil", elem_id="input-image"
)
pose_data = gr.State()
with gr.Row():
paths = sorted(pathlib.Path("pose_images").glob("*.png"))
example_images = gr.Dataset(
components=[input_image],
samples=[[path.as_posix()] for path in paths],
)
with gr.Row():
shape_text = gr.Textbox(
label="Shape Description",
placeholder="""<gender>, <sleeve length>, <length of lower clothing>, <outer clothing type>, <other accessories1>, ...
Note: The outer clothing type and accessories can be omitted.""",
)
with gr.Row():
shape_example_texts = gr.Dataset(
components=[shape_text],
samples=[
["man, sleeveless T-shirt, long pants"],
["woman, short-sleeve T-shirt, short jeans"],
],
)
with gr.Row():
generate_label_button = gr.Button("Generate Label Image")
with gr.Column():
with gr.Row():
label_image = gr.Image(
label="Label Image", type="numpy", elem_id="label-image"
)
with gr.Row():
texture_text = gr.Textbox(
label="Texture Description",
placeholder="""<upper clothing texture>, <lower clothing texture>, <outer clothing texture>
Note: Currently, only 5 types of textures are supported, i.e., pure color, stripe/spline, plaid/lattice, floral, denim.""",
)
with gr.Row():
texture_example_texts = gr.Dataset(
components=[texture_text],
samples=[["pure color, denim"], ["floral, stripe"]],
)
with gr.Row():
sample_steps = gr.Slider(
10, 300, value=10, step=10, label="Sample Steps"
)
with gr.Row():
seed = gr.Slider(0, 1000000, value=0, step=1, label="Seed")
with gr.Row():
generate_human_button = gr.Button("Generate Human")
with gr.Column():
with gr.Row():
result = gr.Image(
label="Result", type="numpy", elem_id="result-image"
)
input_image.change(
fn=model.process_pose_image, inputs=input_image, outputs=pose_data
)
generate_label_button.click(
fn=model.generate_label_image,
inputs=[
pose_data,
shape_text,
],
outputs=label_image,
)
# generate_human_button.click(
# fn=model.generate_human,
# inputs=[
# label_image,
# texture_text,
# sample_steps,
# seed,
# ],
# outputs=result,
# )
generate_human_button.click(
fn=model.generate_human,
inputs=[
pose_data,
shape_text,
texture_text,
sample_steps,
seed,
],
outputs=result,
)
example_images.click(
fn=set_example_image,
inputs=example_images,
outputs=example_images._components,
)
shape_example_texts.click(
fn=set_example_text,
inputs=shape_example_texts,
outputs=shape_example_texts._components,
)
texture_example_texts.click(
fn=set_example_text,
inputs=texture_example_texts,
outputs=texture_example_texts._components,
)
demo.launch(
# enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == "__main__":
main()
|