File size: 6,544 Bytes
dc08f88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python

from __future__ import annotations

import argparse
import os
import pathlib
import subprocess

import gradio as gr

from model import Model

# if os.getenv("SYSTEM") == "spaces":
#     import mim

#     mim.uninstall("mmcv-full", confirm_yes=True)
#     mim.install("mmcv-full==1.5.2", is_yes=True)

#     with open("patch") as f:
#         subprocess.run("patch -p1".split(), cwd="Text2Human", stdin=f)


DESCRIPTION = """# Text2Human

- Algorthm is original from <a href="https://github.com/yumingj/Text2Human">https://github.com/yumingj/Text2Human</a> made by <a href="https://huggingface.co/spaces/hysts/Text2Human">@hysts</a>. Thanks for it's awesome work.

- By varying seeds, you can sample different human images under the same pose, shape description, and texture description. The larger the sample steps, the better quality of the generated images. (The default value of sample steps is 256 in the original repo.)

- Label image generation step can be skipped. However, in that case, the input label image must be 512x256 in size and must contain only the specified colors.
"""


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument("--device", type=str, default="cpu")
    parser.add_argument("--theme", type=str)
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--port", type=int)
    parser.add_argument("--disable-queue", dest="enable_queue", action="store_false")
    return parser.parse_args()


# def set_example_image(example: list) -> dict:
#     return gr.Image.update(value=example[0])


def set_example_image(example: list) -> dict:
    print(example)
    return gr.update(value=example[0]["path"])


# def set_example_text(example: list) -> dict:
#     return gr.Textbox.change(value=example[0])


def set_example_text(example: list) -> dict:
    # Update the Textbox with the example text
    return gr.update(value=example[0])


def main():
    args = parse_args()
    print(args.device)
    model = Model(args.device)

    with gr.Blocks(theme=args.theme, css="style.css") as demo:
        gr.Markdown(DESCRIPTION)

        with gr.Row():
            with gr.Column():
                with gr.Row():
                    input_image = gr.Image(
                        label="Input Pose Image", type="pil", elem_id="input-image"
                    )
                    pose_data = gr.State()
                with gr.Row():
                    paths = sorted(pathlib.Path("pose_images").glob("*.png"))
                    example_images = gr.Dataset(
                        components=[input_image],
                        samples=[[path.as_posix()] for path in paths],
                    )

                with gr.Row():
                    shape_text = gr.Textbox(
                        label="Shape Description",
                        placeholder="""<gender>, <sleeve length>, <length of lower clothing>, <outer clothing type>, <other accessories1>, ...
Note: The outer clothing type and accessories can be omitted.""",
                    )
                with gr.Row():
                    shape_example_texts = gr.Dataset(
                        components=[shape_text],
                        samples=[
                            ["man, sleeveless T-shirt, long pants"],
                            ["woman, short-sleeve T-shirt, short jeans"],
                        ],
                    )
                with gr.Row():
                    generate_label_button = gr.Button("Generate Label Image")

            with gr.Column():
                with gr.Row():
                    label_image = gr.Image(
                        label="Label Image", type="numpy", elem_id="label-image"
                    )

                with gr.Row():
                    texture_text = gr.Textbox(
                        label="Texture Description",
                        placeholder="""<upper clothing texture>, <lower clothing texture>, <outer clothing texture>
Note: Currently, only 5 types of textures are supported, i.e., pure color, stripe/spline, plaid/lattice, floral, denim.""",
                    )
                with gr.Row():
                    texture_example_texts = gr.Dataset(
                        components=[texture_text],
                        samples=[["pure color, denim"], ["floral, stripe"]],
                    )
                with gr.Row():
                    sample_steps = gr.Slider(
                        10, 300, value=10, step=10, label="Sample Steps"
                    )
                with gr.Row():
                    seed = gr.Slider(0, 1000000, value=0, step=1, label="Seed")
                with gr.Row():
                    generate_human_button = gr.Button("Generate Human")

            with gr.Column():
                with gr.Row():
                    result = gr.Image(
                        label="Result", type="numpy", elem_id="result-image"
                    )

        input_image.change(
            fn=model.process_pose_image, inputs=input_image, outputs=pose_data
        )
        generate_label_button.click(
            fn=model.generate_label_image,
            inputs=[
                pose_data,
                shape_text,
            ],
            outputs=label_image,
        )
        # generate_human_button.click(
        #     fn=model.generate_human,
        #     inputs=[
        #         label_image,
        #         texture_text,
        #         sample_steps,
        #         seed,
        #     ],
        #     outputs=result,
        # )
        generate_human_button.click(
            fn=model.generate_human,
            inputs=[
                pose_data,
                shape_text,
                texture_text,
                sample_steps,
                seed,
            ],
            outputs=result,
        )
        example_images.click(
            fn=set_example_image,
            inputs=example_images,
            outputs=example_images._components,
        )
        shape_example_texts.click(
            fn=set_example_text,
            inputs=shape_example_texts,
            outputs=shape_example_texts._components,
        )
        texture_example_texts.click(
            fn=set_example_text,
            inputs=texture_example_texts,
            outputs=texture_example_texts._components,
        )

    demo.launch(
        # enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == "__main__":
    main()