File size: 77,010 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import warnings
from collections.abc import Mapping
from dataclasses import dataclass
from random import randint
from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
import numpy as np
from ..models.bert import BertTokenizer, BertTokenizerFast
from ..tokenization_utils_base import PreTrainedTokenizerBase
from ..utils import PaddingStrategy
InputDataClass = NewType("InputDataClass", Any)
"""
A DataCollator is a function that takes a list of samples from a Dataset and collate them into a batch, as a dictionary
of PyTorch/TensorFlow tensors or NumPy arrays.
"""
DataCollator = NewType("DataCollator", Callable[[List[InputDataClass]], Dict[str, Any]])
class DataCollatorMixin:
def __call__(self, features, return_tensors=None):
if return_tensors is None:
return_tensors = self.return_tensors
if return_tensors == "tf":
return self.tf_call(features)
elif return_tensors == "pt":
return self.torch_call(features)
elif return_tensors == "np":
return self.numpy_call(features)
else:
raise ValueError(f"Framework '{return_tensors}' not recognized!")
def default_data_collator(features: List[InputDataClass], return_tensors="pt") -> Dict[str, Any]:
"""
Very simple data collator that simply collates batches of dict-like objects and performs special handling for
potential keys named:
- `label`: handles a single value (int or float) per object
- `label_ids`: handles a list of values per object
Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs
to the model. See glue and ner for example of how it's useful.
"""
# In this function we'll make the assumption that all `features` in the batch
# have the same attributes.
# So we will look at the first element as a proxy for what attributes exist
# on the whole batch.
if return_tensors == "pt":
return torch_default_data_collator(features)
elif return_tensors == "tf":
return tf_default_data_collator(features)
elif return_tensors == "np":
return numpy_default_data_collator(features)
@dataclass
class DefaultDataCollator(DataCollatorMixin):
"""
Very simple data collator that simply collates batches of dict-like objects and performs special handling for
potential keys named:
- `label`: handles a single value (int or float) per object
- `label_ids`: handles a list of values per object
Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs
to the model. See glue and ner for example of how it's useful.
This is an object (like other data collators) rather than a pure function like default_data_collator. This can be
helpful if you need to set a return_tensors value at initialization.
Args:
return_tensors (`str`, *optional*, defaults to `"pt"`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
return_tensors: str = "pt"
def __call__(self, features: List[Dict[str, Any]], return_tensors=None) -> Dict[str, Any]:
if return_tensors is None:
return_tensors = self.return_tensors
return default_data_collator(features, return_tensors)
def torch_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
import torch
if not isinstance(features[0], Mapping):
features = [vars(f) for f in features]
first = features[0]
batch = {}
# Special handling for labels.
# Ensure that tensor is created with the correct type
# (it should be automatically the case, but let's make sure of it.)
if "label" in first and first["label"] is not None:
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
dtype = torch.long if isinstance(label, int) else torch.float
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
elif "label_ids" in first and first["label_ids"] is not None:
if isinstance(first["label_ids"], torch.Tensor):
batch["labels"] = torch.stack([f["label_ids"] for f in features])
else:
dtype = torch.long if type(first["label_ids"][0]) is int else torch.float
batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype)
# Handling of all other possible keys.
# Again, we will use the first element to figure out which key/values are not None for this model.
for k, v in first.items():
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
if isinstance(v, torch.Tensor):
batch[k] = torch.stack([f[k] for f in features])
elif isinstance(v, np.ndarray):
batch[k] = torch.tensor(np.stack([f[k] for f in features]))
else:
batch[k] = torch.tensor([f[k] for f in features])
return batch
def tf_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
import tensorflow as tf
if not isinstance(features[0], Mapping):
features = [vars(f) for f in features]
first = features[0]
batch = {}
# Special handling for labels.
# Ensure that tensor is created with the correct type
# (it should be automatically the case, but let's make sure of it.)
if "label" in first and first["label"] is not None:
label_col_name = "label"
elif "label_ids" in first and first["label_ids"] is not None:
label_col_name = "label_ids"
elif "labels" in first and first["labels"] is not None:
label_col_name = "labels"
else:
label_col_name = None
if label_col_name is not None:
if isinstance(first[label_col_name], tf.Tensor):
dtype = tf.int64 if first[label_col_name].dtype.is_integer else tf.float32
elif isinstance(first[label_col_name], np.ndarray) or isinstance(first[label_col_name], np.generic):
dtype = tf.int64 if np.issubdtype(first[label_col_name].dtype, np.integer) else tf.float32
elif isinstance(first[label_col_name], (tuple, list)):
dtype = tf.int64 if isinstance(first[label_col_name][0], int) else tf.float32
else:
dtype = tf.int64 if isinstance(first[label_col_name], int) else tf.float32
batch["labels"] = tf.convert_to_tensor([f[label_col_name] for f in features], dtype=dtype)
# Handling of all other possible keys.
# Again, we will use the first element to figure out which key/values are not None for this model.
for k, v in first.items():
if k not in ("label", "label_ids", "labels") and v is not None and not isinstance(v, str):
if isinstance(v, (tf.Tensor, np.ndarray)):
batch[k] = tf.stack([f[k] for f in features])
else:
batch[k] = tf.convert_to_tensor([f[k] for f in features])
return batch
def numpy_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
if not isinstance(features[0], Mapping):
features = [vars(f) for f in features]
first = features[0]
batch = {}
# Special handling for labels.
# Ensure that tensor is created with the correct type
# (it should be automatically the case, but let's make sure of it.)
if "label" in first and first["label"] is not None:
label = first["label"].item() if isinstance(first["label"], np.ndarray) else first["label"]
dtype = np.int64 if isinstance(label, int) else np.float32
batch["labels"] = np.array([f["label"] for f in features], dtype=dtype)
elif "label_ids" in first and first["label_ids"] is not None:
if isinstance(first["label_ids"], np.ndarray):
batch["labels"] = np.stack([f["label_ids"] for f in features])
else:
dtype = np.int64 if type(first["label_ids"][0]) is int else np.float32
batch["labels"] = np.array([f["label_ids"] for f in features], dtype=dtype)
# Handling of all other possible keys.
# Again, we will use the first element to figure out which key/values are not None for this model.
for k, v in first.items():
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
if isinstance(v, np.ndarray):
batch[k] = np.stack([f[k] for f in features])
else:
batch[k] = np.array([f[k] for f in features])
return batch
@dataclass
class DataCollatorWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
return_tensors (`str`, *optional*, defaults to `"pt"`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
return_tensors: str = "pt"
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
if "label" in batch:
batch["labels"] = batch["label"]
del batch["label"]
if "label_ids" in batch:
batch["labels"] = batch["label_ids"]
del batch["label_ids"]
return batch
@dataclass
class DataCollatorForTokenClassification(DataCollatorMixin):
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (`int`, *optional*, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
return_tensors (`str`, *optional*, defaults to `"pt"`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
return_tensors: str = "pt"
def torch_call(self, features):
import torch
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
no_labels_features = [{k: v for k, v in feature.items() if k != label_name} for feature in features]
batch = self.tokenizer.pad(
no_labels_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
if labels is None:
return batch
sequence_length = batch["input_ids"].shape[1]
padding_side = self.tokenizer.padding_side
def to_list(tensor_or_iterable):
if isinstance(tensor_or_iterable, torch.Tensor):
return tensor_or_iterable.tolist()
return list(tensor_or_iterable)
if padding_side == "right":
batch[label_name] = [
to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
]
else:
batch[label_name] = [
[self.label_pad_token_id] * (sequence_length - len(label)) + to_list(label) for label in labels
]
batch[label_name] = torch.tensor(batch[label_name], dtype=torch.int64)
return batch
def tf_call(self, features):
import tensorflow as tf
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
# Conversion to tensors will fail if we have labels as they are not of the same length yet.
return_tensors="tf" if labels is None else None,
)
if labels is None:
return batch
sequence_length = tf.convert_to_tensor(batch["input_ids"]).shape[1]
padding_side = self.tokenizer.padding_side
if padding_side == "right":
batch["labels"] = [
list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
]
else:
batch["labels"] = [
[self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels
]
batch = {k: tf.convert_to_tensor(v, dtype=tf.int64) for k, v in batch.items()}
return batch
def numpy_call(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
# Conversion to tensors will fail if we have labels as they are not of the same length yet.
return_tensors="np" if labels is None else None,
)
if labels is None:
return batch
sequence_length = np.array(batch["input_ids"]).shape[1]
padding_side = self.tokenizer.padding_side
if padding_side == "right":
batch["labels"] = [
list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
]
else:
batch["labels"] = [
[self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels
]
batch = {k: np.array(v, dtype=np.int64) for k, v in batch.items()}
return batch
def _torch_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
import torch
# Tensorize if necessary.
if isinstance(examples[0], (list, tuple, np.ndarray)):
examples = [torch.tensor(e, dtype=torch.long) for e in examples]
length_of_first = examples[0].size(0)
# Check if padding is necessary.
are_tensors_same_length = all(x.size(0) == length_of_first for x in examples)
if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
return torch.stack(examples, dim=0)
# If yes, check if we have a `pad_token`.
if tokenizer._pad_token is None:
raise ValueError(
"You are attempting to pad samples but the tokenizer you are using"
f" ({tokenizer.__class__.__name__}) does not have a pad token."
)
# Creating the full tensor and filling it with our data.
max_length = max(x.size(0) for x in examples)
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
for i, example in enumerate(examples):
if tokenizer.padding_side == "right":
result[i, : example.shape[0]] = example
else:
result[i, -example.shape[0] :] = example
return result
def _tf_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
import tensorflow as tf
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
# Tensorize if necessary.
if isinstance(examples[0], (list, tuple)):
examples = [tf.convert_to_tensor(e, dtype=tf.int64) for e in examples]
# Check if padding is necessary.
length_of_first = len(examples[0])
are_tensors_same_length = all(len(x) == length_of_first for x in examples)
if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
return tf.stack(examples, axis=0)
# If yes, check if we have a `pad_token`.
if tokenizer._pad_token is None:
raise ValueError(
"You are attempting to pad samples but the tokenizer you are using"
f" ({tokenizer.__class__.__name__}) does not have a pad token."
)
# Creating the full tensor and filling it with our data.
max_length = max(len(x) for x in examples)
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
# result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
result = []
rank = tf.rank(examples[0])
paddings = np.zeros((rank, 2), dtype=np.int32)
for example in examples:
if tokenizer.padding_side == "right":
paddings[0, 1] = max_length - len(example)
else:
paddings[0, 0] = max_length - len(example)
result.append(tf.pad(example, paddings, constant_values=tokenizer.pad_token_id))
return tf.stack(result, axis=0)
def _numpy_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
# Tensorize if necessary.
if isinstance(examples[0], (list, tuple)):
examples = [np.array(e, dtype=np.int64) for e in examples]
# Check if padding is necessary.
length_of_first = len(examples[0])
are_tensors_same_length = all(len(x) == length_of_first for x in examples)
if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
return np.stack(examples, axis=0)
# If yes, check if we have a `pad_token`.
if tokenizer._pad_token is None:
raise ValueError(
"You are attempting to pad samples but the tokenizer you are using"
f" ({tokenizer.__class__.__name__}) does not have a pad token."
)
# Creating the full tensor and filling it with our data.
max_length = max(len(x) for x in examples)
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
result = np.full(shape=(len(examples), max_length), fill_value=tokenizer.pad_token_id, dtype=examples[0].dtype)
for i, example in enumerate(examples):
if tokenizer.padding_side == "right":
result[i, : example.shape[0]] = example
else:
result[i, -example.shape[0] :] = example
return result
def tolist(x):
if isinstance(x, list):
return x
elif hasattr(x, "numpy"): # Checks for TF tensors without needing the import
x = x.numpy()
return x.tolist()
@dataclass
class DataCollatorForSeq2Seq:
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
model ([`PreTrainedModel`], *optional*):
The model that is being trained. If set and has the *prepare_decoder_input_ids_from_labels*, use it to
prepare the *decoder_input_ids*
This is useful when using *label_smoothing* to avoid calculating loss twice.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (`int`, *optional*, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions).
return_tensors (`str`, *optional*, defaults to `"pt"`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
tokenizer: PreTrainedTokenizerBase
model: Optional[Any] = None
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
return_tensors: str = "pt"
def __call__(self, features, return_tensors=None):
if return_tensors is None:
return_tensors = self.return_tensors
labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None
# We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the
# same length to return tensors.
if labels is not None:
max_label_length = max(len(l) for l in labels)
if self.pad_to_multiple_of is not None:
max_label_length = (
(max_label_length + self.pad_to_multiple_of - 1)
// self.pad_to_multiple_of
* self.pad_to_multiple_of
)
padding_side = self.tokenizer.padding_side
for feature in features:
remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"]))
if isinstance(feature["labels"], list):
feature["labels"] = (
feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"]
)
elif padding_side == "right":
feature["labels"] = np.concatenate([feature["labels"], remainder]).astype(np.int64)
else:
feature["labels"] = np.concatenate([remainder, feature["labels"]]).astype(np.int64)
features = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=return_tensors,
)
# prepare decoder_input_ids
if (
labels is not None
and self.model is not None
and hasattr(self.model, "prepare_decoder_input_ids_from_labels")
):
decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(labels=features["labels"])
features["decoder_input_ids"] = decoder_input_ids
return features
@dataclass
class DataCollatorForLanguageModeling(DataCollatorMixin):
"""
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
are not all of the same length.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
mlm (`bool`, *optional*, defaults to `True`):
Whether or not to use masked language modeling. If set to `False`, the labels are the same as the inputs
with the padding tokens ignored (by setting them to -100). Otherwise, the labels are -100 for non-masked
tokens and the value to predict for the masked token.
mlm_probability (`float`, *optional*, defaults to 0.15):
The probability with which to (randomly) mask tokens in the input, when `mlm` is set to `True`.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
return_tensors (`str`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
<Tip>
For best performance, this data collator should be used with a dataset having items that are dictionaries or
BatchEncoding, with the `"special_tokens_mask"` key, as returned by a [`PreTrainedTokenizer`] or a
[`PreTrainedTokenizerFast`] with the argument `return_special_tokens_mask=True`.
</Tip>"""
tokenizer: PreTrainedTokenizerBase
mlm: bool = True
mlm_probability: float = 0.15
pad_to_multiple_of: Optional[int] = None
tf_experimental_compile: bool = False
return_tensors: str = "pt"
def __post_init__(self):
if self.mlm and self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
"You should pass `mlm=False` to train on causal language modeling instead."
)
if self.tf_experimental_compile:
import tensorflow as tf
self.tf_mask_tokens = tf.function(self.tf_mask_tokens, jit_compile=True)
@staticmethod
def tf_bernoulli(shape, probability):
import tensorflow as tf
prob_matrix = tf.fill(shape, probability)
return tf.cast(prob_matrix - tf.random.uniform(shape, 0, 1) >= 0, tf.bool)
def tf_mask_tokens(
self, inputs: Any, vocab_size, mask_token_id, special_tokens_mask: Optional[Any] = None
) -> Tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
import tensorflow as tf
mask_token_id = tf.cast(mask_token_id, inputs.dtype)
input_shape = tf.shape(inputs)
# 1 for a special token, 0 for a normal token in the special tokens mask
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
masked_indices = self.tf_bernoulli(input_shape, self.mlm_probability) & ~special_tokens_mask
# Replace unmasked indices with -100 in the labels since we only compute loss on masked tokens
labels = tf.where(masked_indices, inputs, -100)
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = self.tf_bernoulli(input_shape, 0.8) & masked_indices
inputs = tf.where(indices_replaced, mask_token_id, inputs)
# 10% of the time, we replace masked input tokens with random word
indices_random = self.tf_bernoulli(input_shape, 0.1) & masked_indices & ~indices_replaced
random_words = tf.random.uniform(input_shape, maxval=vocab_size, dtype=inputs.dtype)
inputs = tf.where(indices_random, random_words, inputs)
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
import tensorflow as tf
# Handle dict or lists with proper padding and conversion to tensor.
if isinstance(examples[0], Mapping):
batch = self.tokenizer.pad(examples, return_tensors="tf", pad_to_multiple_of=self.pad_to_multiple_of)
else:
batch = {
"input_ids": _tf_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
}
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
if self.mlm:
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True)
for val in batch["input_ids"].numpy().tolist()
]
# Cannot directly create as bool
special_tokens_mask = tf.cast(tf.convert_to_tensor(special_tokens_mask, dtype=tf.int64), tf.bool)
else:
special_tokens_mask = tf.cast(special_tokens_mask, tf.bool)
batch["input_ids"], batch["labels"] = self.tf_mask_tokens(
tf.cast(batch["input_ids"], tf.int64),
special_tokens_mask=special_tokens_mask,
mask_token_id=self.tokenizer.mask_token_id,
vocab_size=len(self.tokenizer),
)
else:
labels = batch["input_ids"]
if self.tokenizer.pad_token_id is not None:
# Replace self.tokenizer.pad_token_id with -100
labels = tf.where(labels == self.tokenizer.pad_token_id, -100, labels)
else:
labels = tf.identity(labels) # Makes a copy, just in case
batch["labels"] = labels
return batch
def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
# Handle dict or lists with proper padding and conversion to tensor.
if isinstance(examples[0], Mapping):
batch = self.tokenizer.pad(examples, return_tensors="pt", pad_to_multiple_of=self.pad_to_multiple_of)
else:
batch = {
"input_ids": _torch_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
}
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
if self.mlm:
batch["input_ids"], batch["labels"] = self.torch_mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
else:
labels = batch["input_ids"].clone()
if self.tokenizer.pad_token_id is not None:
labels[labels == self.tokenizer.pad_token_id] = -100
batch["labels"] = labels
return batch
def torch_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
import torch
labels = inputs.clone()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = torch.full(labels.shape, self.mlm_probability)
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
else:
special_tokens_mask = special_tokens_mask.bool()
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
# Handle dict or lists with proper padding and conversion to tensor.
if isinstance(examples[0], Mapping):
batch = self.tokenizer.pad(examples, return_tensors="np", pad_to_multiple_of=self.pad_to_multiple_of)
else:
batch = {
"input_ids": _numpy_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
}
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
if self.mlm:
batch["input_ids"], batch["labels"] = self.numpy_mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
else:
labels = np.copy(batch["input_ids"])
if self.tokenizer.pad_token_id is not None:
labels[labels == self.tokenizer.pad_token_id] = -100
batch["labels"] = labels
return batch
def numpy_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = np.copy(inputs)
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = np.full(labels.shape, self.mlm_probability)
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
special_tokens_mask = np.array(special_tokens_mask, dtype=bool)
else:
special_tokens_mask = special_tokens_mask.astype(bool)
probability_matrix[special_tokens_mask] = 0
# Numpy doesn't have bernoulli, so we use a binomial with 1 trial
masked_indices = np.random.binomial(1, probability_matrix, size=probability_matrix.shape).astype(bool)
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = np.random.binomial(1, 0.8, size=labels.shape).astype(bool) & masked_indices
inputs[indices_replaced] = self.tokenizer.mask_token_id
# 10% of the time, we replace masked input tokens with random word
# indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
indices_random = (
np.random.binomial(1, 0.5, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced
)
random_words = np.random.randint(
low=0, high=len(self.tokenizer), size=np.count_nonzero(indices_random), dtype=np.int64
)
inputs[indices_random] = random_words
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
@dataclass
class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
"""
Data collator used for language modeling that masks entire words.
- collates batches of tensors, honoring their tokenizer's pad_token
- preprocesses batches for masked language modeling
<Tip>
This collator relies on details of the implementation of subword tokenization by [`BertTokenizer`], specifically
that subword tokens are prefixed with *##*. For tokenizers that do not adhere to this scheme, this collator will
produce an output that is roughly equivalent to [`.DataCollatorForLanguageModeling`].
</Tip>"""
def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
if isinstance(examples[0], Mapping):
input_ids = [e["input_ids"] for e in examples]
else:
input_ids = examples
examples = [{"input_ids": e} for e in examples]
batch_input = _torch_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
mask_labels = []
for e in examples:
ref_tokens = []
for id in tolist(e["input_ids"]):
token = self.tokenizer._convert_id_to_token(id)
ref_tokens.append(token)
# For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢]
if "chinese_ref" in e:
ref_pos = tolist(e["chinese_ref"])
len_seq = len(e["input_ids"])
for i in range(len_seq):
if i in ref_pos:
ref_tokens[i] = "##" + ref_tokens[i]
mask_labels.append(self._whole_word_mask(ref_tokens))
batch_mask = _torch_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
inputs, labels = self.torch_mask_tokens(batch_input, batch_mask)
return {"input_ids": inputs, "labels": labels}
def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
import tensorflow as tf
if isinstance(examples[0], Mapping):
input_ids = [e["input_ids"] for e in examples]
else:
input_ids = examples
examples = [{"input_ids": e} for e in examples]
batch_input = _tf_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
mask_labels = []
for e in examples:
ref_tokens = []
for id in tolist(e["input_ids"]):
token = self.tokenizer._convert_id_to_token(id)
ref_tokens.append(token)
# For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢]
if "chinese_ref" in e:
ref_pos = tolist(e["chinese_ref"])
len_seq = len(e["input_ids"])
for i in range(len_seq):
if i in ref_pos:
ref_tokens[i] = "##" + ref_tokens[i]
mask_labels.append(self._whole_word_mask(ref_tokens))
batch_mask = _tf_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
inputs, labels = self.tf_mask_tokens(tf.cast(batch_input, tf.int64), batch_mask)
return {"input_ids": inputs, "labels": labels}
def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
if isinstance(examples[0], Mapping):
input_ids = [e["input_ids"] for e in examples]
else:
input_ids = examples
examples = [{"input_ids": e} for e in examples]
batch_input = _numpy_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
mask_labels = []
for e in examples:
ref_tokens = []
for id in tolist(e["input_ids"]):
token = self.tokenizer._convert_id_to_token(id)
ref_tokens.append(token)
# For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢]
if "chinese_ref" in e:
ref_pos = tolist(e["chinese_ref"])
len_seq = len(e["input_ids"])
for i in range(len_seq):
if i in ref_pos:
ref_tokens[i] = "##" + ref_tokens[i]
mask_labels.append(self._whole_word_mask(ref_tokens))
batch_mask = _numpy_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
inputs, labels = self.numpy_mask_tokens(batch_input, batch_mask)
return {"input_ids": inputs, "labels": labels}
def _whole_word_mask(self, input_tokens: List[str], max_predictions=512):
"""
Get 0/1 labels for masked tokens with whole word mask proxy
"""
if not isinstance(self.tokenizer, (BertTokenizer, BertTokenizerFast)):
warnings.warn(
"DataCollatorForWholeWordMask is only suitable for BertTokenizer-like tokenizers. "
"Please refer to the documentation for more information."
)
cand_indexes = []
for i, token in enumerate(input_tokens):
if token == "[CLS]" or token == "[SEP]":
continue
if len(cand_indexes) >= 1 and token.startswith("##"):
cand_indexes[-1].append(i)
else:
cand_indexes.append([i])
random.shuffle(cand_indexes)
num_to_predict = min(max_predictions, max(1, int(round(len(input_tokens) * self.mlm_probability))))
masked_lms = []
covered_indexes = set()
for index_set in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
# If adding a whole-word mask would exceed the maximum number of
# predictions, then just skip this candidate.
if len(masked_lms) + len(index_set) > num_to_predict:
continue
is_any_index_covered = False
for index in index_set:
if index in covered_indexes:
is_any_index_covered = True
break
if is_any_index_covered:
continue
for index in index_set:
covered_indexes.add(index)
masked_lms.append(index)
if len(covered_indexes) != len(masked_lms):
raise ValueError("Length of covered_indexes is not equal to length of masked_lms.")
mask_labels = [1 if i in covered_indexes else 0 for i in range(len(input_tokens))]
return mask_labels
def torch_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
"""
import torch
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
" --mlm flag if you want to use this tokenizer."
)
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
probability_matrix = mask_labels
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
if self.tokenizer._pad_token is not None:
padding_mask = labels.eq(self.tokenizer.pad_token_id)
probability_matrix.masked_fill_(padding_mask, value=0.0)
masked_indices = probability_matrix.bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def tf_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
"""
import tensorflow as tf
input_shape = tf.shape(inputs)
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
" --mlm flag if you want to use this tokenizer."
)
labels = tf.identity(inputs)
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
masked_indices = tf.cast(mask_labels, tf.bool)
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels
]
masked_indices = masked_indices & ~tf.cast(special_tokens_mask, dtype=tf.bool)
if self.tokenizer._pad_token is not None:
padding_mask = inputs == self.tokenizer.pad_token_id
masked_indices = masked_indices & ~padding_mask
# Replace unmasked indices with -100 in the labels since we only compute loss on masked tokens
labels = tf.where(masked_indices, inputs, -100)
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = self.tf_bernoulli(input_shape, 0.8) & masked_indices
inputs = tf.where(indices_replaced, self.tokenizer.mask_token_id, inputs)
# 10% of the time, we replace masked input tokens with random word
indices_random = self.tf_bernoulli(input_shape, 0.5) & masked_indices & ~indices_replaced
random_words = tf.random.uniform(input_shape, maxval=len(self.tokenizer), dtype=tf.int64)
inputs = tf.where(indices_random, random_words, inputs)
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def numpy_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
"""
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
" --mlm flag if you want to use this tokenizer."
)
labels = np.copy(inputs)
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
masked_indices = mask_labels.astype(bool)
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
masked_indices[np.array(special_tokens_mask, dtype=bool)] = 0
if self.tokenizer._pad_token is not None:
padding_mask = labels == self.tokenizer.pad_token_id
masked_indices[padding_mask] = 0
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = np.random.binomial(1, 0.8, size=labels.shape).astype(bool) & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
# indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
indices_random = (
np.random.binomial(1, 0.5, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced
)
random_words = np.random.randint(low=0, high=len(self.tokenizer), size=labels.shape, dtype=np.int64)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
@dataclass
class DataCollatorForSOP(DataCollatorForLanguageModeling):
"""
Data collator used for sentence order prediction task.
- collates batches of tensors, honoring their tokenizer's pad_token
- preprocesses batches for both masked language modeling and sentence order prediction
"""
def __init__(self, *args, **kwargs):
warnings.warn(
"DataCollatorForSOP is deprecated and will be removed in a future version, you can now use "
"DataCollatorForLanguageModeling instead.",
FutureWarning,
)
def __call__(self, examples: List[Dict[str, Any]]) -> Dict[str, Any]:
import torch
from torch.nn.utils.rnn import pad_sequence
input_ids = [example["input_ids"] for example in examples]
input_ids = _torch_collate_batch(input_ids, self.tokenizer)
input_ids, labels, attention_mask = self.mask_tokens(input_ids)
token_type_ids = [example["token_type_ids"] for example in examples]
# size of segment_ids varied because randomness, padding zero to the end as the original implementation
token_type_ids = pad_sequence(token_type_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
sop_label_list = [example["sentence_order_label"] for example in examples]
sentence_order_label = torch.stack(sop_label_list)
return {
"input_ids": input_ids,
"labels": labels,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"sentence_order_label": sentence_order_label,
}
def mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any]:
"""
Prepare masked tokens inputs/labels/attention_mask for masked language modeling: 80% MASK, 10% random, 10%
original. N-gram not applied yet.
"""
import torch
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
" --mlm flag if you want to use this tokenizer."
)
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
probability_matrix = torch.full(labels.shape, self.mlm_probability)
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
if self.tokenizer._pad_token is not None:
padding_mask = labels.eq(self.tokenizer.pad_token_id)
probability_matrix.masked_fill_(padding_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
# probability be `1` (masked), however in albert model attention mask `0` means masked, revert the value
attention_mask = (~masked_indices).float()
if self.tokenizer._pad_token is not None:
attention_padding_mask = labels.eq(self.tokenizer.pad_token_id)
attention_mask.masked_fill_(attention_padding_mask, value=1.0)
labels[~masked_indices] = -100 # We only compute loss on masked tokens, -100 is default for CE compute
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels, attention_mask
@dataclass
class DataCollatorForPermutationLanguageModeling(DataCollatorMixin):
"""
Data collator used for permutation language modeling.
- collates batches of tensors, honoring their tokenizer's pad_token
- preprocesses batches for permutation language modeling with procedures specific to XLNet
"""
tokenizer: PreTrainedTokenizerBase
plm_probability: float = 1 / 6
max_span_length: int = 5 # maximum length of a span of masked tokens
return_tensors: str = "pt"
def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
if isinstance(examples[0], Mapping):
examples = [e["input_ids"] for e in examples]
batch = _torch_collate_batch(examples, self.tokenizer)
inputs, perm_mask, target_mapping, labels = self.torch_mask_tokens(batch)
return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
if isinstance(examples[0], Mapping):
examples = [e["input_ids"] for e in examples]
batch = _tf_collate_batch(examples, self.tokenizer)
inputs, perm_mask, target_mapping, labels = self.tf_mask_tokens(batch)
return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
if isinstance(examples[0], Mapping):
examples = [e["input_ids"] for e in examples]
batch = _numpy_collate_batch(examples, self.tokenizer)
inputs, perm_mask, target_mapping, labels = self.numpy_mask_tokens(batch)
return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
def torch_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
"""
The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be
masked
3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length -
span_length]` and mask tokens `start_index:start_index + span_length`
4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the
sequence to be processed), repeat from Step 1.
"""
import torch
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for permutation language modeling."
" Please add a mask token if you want to use this tokenizer."
)
if inputs.size(1) % 2 != 0:
raise ValueError(
"This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see"
" relevant comments in source code for details."
)
labels = inputs.clone()
# Creating the mask and target_mapping tensors
masked_indices = torch.full(labels.shape, 0, dtype=torch.bool)
target_mapping = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32)
for i in range(labels.size(0)):
# Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
cur_len = 0
max_len = labels.size(1)
while cur_len < max_len:
# Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
span_length = torch.randint(1, self.max_span_length + 1, (1,)).item()
# Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked
context_length = int(span_length / self.plm_probability)
# Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length`
start_index = cur_len + torch.randint(context_length - span_length + 1, (1,)).item()
masked_indices[i, start_index : start_index + span_length] = 1
# Set `cur_len = cur_len + context_length`
cur_len += context_length
# Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether,
# the i-th predict corresponds to the i-th token.
target_mapping[i] = torch.eye(labels.size(1))
special_tokens_mask = torch.tensor(
[self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()],
dtype=torch.bool,
)
masked_indices.masked_fill_(special_tokens_mask, value=0.0)
if self.tokenizer._pad_token is not None:
padding_mask = labels.eq(self.tokenizer.pad_token_id)
masked_indices.masked_fill_(padding_mask, value=0.0)
# Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc.
non_func_mask = ~(padding_mask | special_tokens_mask)
inputs[masked_indices] = self.tokenizer.mask_token_id
labels[~masked_indices] = -100 # We only compute loss on masked tokens
perm_mask = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32)
for i in range(labels.size(0)):
# Generate permutation indices i.e. sample a random factorisation order for the sequence. This will
# determine which tokens a given token can attend to (encoded in `perm_mask`).
# Note: Length of token sequence being permuted has to be less than or equal to reused sequence length
# (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation,
# we assume that reused length is half of sequence length and permutation length is equal to reused length.
# This requires that the sequence length be even.
# Create a linear factorisation order
perm_index = torch.arange(labels.size(1))
# Split this into two halves, assuming that half the sequence is reused each time
perm_index = perm_index.reshape((-1, labels.size(1) // 2)).transpose(0, 1)
# Permute the two halves such that they do not cross over
perm_index = perm_index[torch.randperm(labels.size(1) // 2)]
# Flatten this out into the desired permuted factorisation order
perm_index = torch.flatten(perm_index.transpose(0, 1))
# Set the permutation indices of non-masked (non-functional) tokens to the
# smallest index (-1) so that:
# (1) They can be seen by all other positions
# (2) They cannot see masked positions, so there won't be information leak
perm_index.masked_fill_(~masked_indices[i] & non_func_mask[i], -1)
# The logic for whether the i-th token can attend on the j-th token based on the factorisation order:
# 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token
# 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token
perm_mask[i] = (
perm_index.reshape((labels.size(1), 1)) <= perm_index.reshape((1, labels.size(1)))
) & masked_indices[i]
return inputs.long(), perm_mask, target_mapping, labels.long()
def tf_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
"""
The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be
masked
3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length -
span_length]` and mask tokens `start_index:start_index + span_length`
4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the
sequence to be processed), repeat from Step 1.
"""
import tensorflow as tf
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for permutation language modeling."
" Please add a mask token if you want to use this tokenizer."
)
if tf.shape(inputs)[1] % 2 != 0:
raise ValueError(
"This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see"
" relevant comments in source code for details."
)
labels = tf.identity(inputs)
# Creating the mask and target_mapping tensors
masked_indices = np.full(labels.shape.as_list(), 0, dtype=bool)
labels_shape = tf.shape(labels)
target_mapping = np.zeros((labels_shape[0], labels_shape[1], labels_shape[1]), dtype=np.float32)
for i in range(len(labels)):
# Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
cur_len = 0
max_len = tf.shape(labels)[1]
while cur_len < max_len:
# Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
span_length = randint(1, self.max_span_length + 1)
# Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked
context_length = int(span_length / self.plm_probability)
# Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length`
start_index = cur_len + randint(0, context_length - span_length + 1)
masked_indices[i, start_index : start_index + span_length] = 1
# Set `cur_len = cur_len + context_length`
cur_len += context_length
# Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether,
# the i-th predict corresponds to the i-th token.
target_mapping[i] = np.eye(labels_shape[1])
masked_indices = tf.cast(tf.convert_to_tensor(masked_indices), dtype=tf.bool)
target_mapping = tf.convert_to_tensor(target_mapping)
special_tokens_mask = tf.convert_to_tensor(
[
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True)
for val in labels.numpy().tolist()
],
)
special_tokens_mask = tf.cast(special_tokens_mask, dtype=tf.bool)
masked_indices = masked_indices & ~special_tokens_mask
if self.tokenizer._pad_token is not None:
padding_mask = labels == self.tokenizer.pad_token_id
masked_indices = masked_indices & ~padding_mask
# Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc.
non_func_mask = ~(padding_mask | special_tokens_mask)
inputs = tf.where(masked_indices, self.tokenizer.mask_token_id, inputs)
labels = tf.where(masked_indices, labels, -100) # We only compute loss on masked tokens
perm_mask = []
for i in range(len(labels)):
# Generate permutation indices i.e. sample a random factorisation order for the sequence. This will
# determine which tokens a given token can attend to (encoded in `perm_mask`).
# Note: Length of token sequence being permuted has to be less than or equal to reused sequence length
# (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation,
# we assume that reused length is half of sequence length and permutation length is equal to reused length.
# This requires that the sequence length be even.
# Create a linear factorisation order
# tf.range is the equivalent of torch.arange
perm_index = tf.range(labels_shape[1])
# Split this into two halves, assuming that half the sequence is reused each time
perm_index = tf.transpose(tf.reshape(perm_index, (-1, labels_shape[1] // 2)))
# Permute the two halves such that they do not cross over
perm_index = tf.random.shuffle(perm_index) # Shuffles along the first dimension
# Flatten this out into the desired permuted factorisation order
perm_index = tf.reshape(tf.transpose(perm_index), (-1,))
# Set the permutation indices of non-masked (non-functional) tokens to the
# smallest index (-1) so that:
# (1) They can be seen by all other positions
# (2) They cannot see masked positions, so there won't be information leak
perm_index = tf.where(~masked_indices[i] & non_func_mask[i], -1, perm_index)
# The logic for whether the i-th token can attend on the j-th token based on the factorisation order:
# 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token
# 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token
perm_mask.append(
(tf.reshape(perm_index, (labels_shape[1], 1)) <= tf.reshape(perm_index, (1, labels_shape[1])))
& masked_indices[i]
)
perm_mask = tf.stack(perm_mask, axis=0)
return tf.cast(inputs, tf.int64), tf.cast(perm_mask, tf.float32), target_mapping, tf.cast(labels, tf.int64)
def numpy_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
"""
The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be
masked
3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length -
span_length]` and mask tokens `start_index:start_index + span_length`
4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the
sequence to be processed), repeat from Step 1.
"""
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for permutation language modeling."
" Please add a mask token if you want to use this tokenizer."
)
if inputs.shape[1] % 2 != 0:
raise ValueError(
"This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see"
" relevant comments in source code for details."
)
labels = np.copy(inputs)
# Creating the mask and target_mapping tensors
masked_indices = np.full(labels.shape, 0, dtype=bool)
target_mapping = np.zeros((labels.shape[0], labels.shape[1], labels.shape[1]), dtype=np.float32)
for i in range(labels.shape[0]):
# Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
cur_len = 0
max_len = labels.shape[1]
while cur_len < max_len:
# Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
span_length = randint(1, self.max_span_length + 1)
# Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked
context_length = int(span_length / self.plm_probability)
# Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length`
start_index = cur_len + randint(0, context_length - span_length + 1)
masked_indices[i, start_index : start_index + span_length] = 1
# Set `cur_len = cur_len + context_length`
cur_len += context_length
# Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether,
# the i-th predict corresponds to the i-th token.
target_mapping[i] = np.eye(labels.shape[1])
special_tokens_mask = np.array(
[self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()],
dtype=bool,
)
masked_indices[special_tokens_mask] = 0
if self.tokenizer._pad_token is not None:
padding_mask = labels == self.tokenizer.pad_token_id
masked_indices[padding_mask] = 0.0
# Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc.
non_func_mask = ~(padding_mask | special_tokens_mask)
inputs[masked_indices] = self.tokenizer.mask_token_id
labels[~masked_indices] = -100 # We only compute loss on masked tokens
perm_mask = np.zeros((labels.shape[0], labels.shape[1], labels.shape[1]), dtype=np.float32)
for i in range(labels.shape[0]):
# Generate permutation indices i.e. sample a random factorisation order for the sequence. This will
# determine which tokens a given token can attend to (encoded in `perm_mask`).
# Note: Length of token sequence being permuted has to be less than or equal to reused sequence length
# (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation,
# we assume that reused length is half of sequence length and permutation length is equal to reused length.
# This requires that the sequence length be even.
# Create a linear factorisation order
perm_index = np.arange(labels.shape[1])
# Split this into two halves, assuming that half the sequence is reused each time
perm_index = perm_index.reshape((-1, labels.shape[1] // 2)).T
# Permute the two halves such that they do not cross over
np.random.shuffle(perm_index)
# Flatten this out into the desired permuted factorisation order
perm_index = perm_index.T.flatten()
# Set the permutation indices of non-masked (non-functional) tokens to the
# smallest index (-1) so that:
# (1) They can be seen by all other positions
# (2) They cannot see masked positions, so there won't be information leak
perm_index[~masked_indices[i] & non_func_mask[i]] = -1
# The logic for whether the i-th token can attend on the j-th token based on the factorisation order:
# 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token
# 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token
perm_mask[i] = (
perm_index.reshape((labels.shape[1], 1)) <= perm_index.reshape((1, labels.shape[1]))
) & masked_indices[i]
return inputs.astype(np.int64), perm_mask, target_mapping, labels.astype(np.int64)
|