Spaces:
Running
on
T4
Running
on
T4
File size: 6,475 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
logger = logging.get_logger(__name__)
def list_field(default=None, metadata=None):
return field(default_factory=lambda: default, metadata=metadata)
@dataclass
class BenchmarkArguments:
"""
BenchMarkArguments are arguments we use in our benchmark scripts **which relate to the training loop itself**.
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command
line.
"""
models: List[str] = list_field(
default=[],
metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
},
)
batch_sizes: List[int] = list_field(
default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"}
)
sequence_lengths: List[int] = list_field(
default=[8, 32, 128, 512],
metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"},
)
inference: bool = field(
default=True,
metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."},
)
cuda: bool = field(
default=True,
metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."},
)
tpu: bool = field(
default=True, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."}
)
fp16: bool = field(default=False, metadata={"help": "Use FP16 to accelerate inference."})
training: bool = field(default=False, metadata={"help": "Benchmark training of model"})
verbose: bool = field(default=False, metadata={"help": "Verbose memory tracing"})
speed: bool = field(
default=True,
metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."},
)
memory: bool = field(
default=True,
metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
},
)
trace_memory_line_by_line: bool = field(default=False, metadata={"help": "Trace memory line by line"})
save_to_csv: bool = field(default=False, metadata={"help": "Save result to a CSV file"})
log_print: bool = field(default=False, metadata={"help": "Save all print statements in a log file"})
env_print: bool = field(default=False, metadata={"help": "Whether to print environment information"})
multi_process: bool = field(
default=True,
metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
},
)
inference_time_csv_file: str = field(
default=f"inference_time_{round(time())}.csv",
metadata={"help": "CSV filename used if saving time results to csv."},
)
inference_memory_csv_file: str = field(
default=f"inference_memory_{round(time())}.csv",
metadata={"help": "CSV filename used if saving memory results to csv."},
)
train_time_csv_file: str = field(
default=f"train_time_{round(time())}.csv",
metadata={"help": "CSV filename used if saving time results to csv for training."},
)
train_memory_csv_file: str = field(
default=f"train_memory_{round(time())}.csv",
metadata={"help": "CSV filename used if saving memory results to csv for training."},
)
env_info_csv_file: str = field(
default=f"env_info_{round(time())}.csv",
metadata={"help": "CSV filename used if saving environment information."},
)
log_filename: str = field(
default=f"log_{round(time())}.csv",
metadata={"help": "Log filename used if print statements are saved in log."},
)
repeat: int = field(default=3, metadata={"help": "Times an experiment will be run."})
only_pretrain_model: bool = field(
default=False,
metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
},
)
def __post_init__(self):
warnings.warn(
f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"
" are deprecated in general and it is advised to use external Benchmarking libraries "
" to benchmark Transformer models.",
FutureWarning,
)
def to_json_string(self):
"""
Serializes this instance to a JSON string.
"""
return json.dumps(dataclasses.asdict(self), indent=2)
@property
def model_names(self) -> List[str]:
if len(self.models) <= 0:
raise ValueError(
"Please make sure you provide at least one model name / model identifier, *e.g.* `--models"
" bert-base-cased` or `args.models = ['bert-base-cased']."
)
return self.models
@property
def do_multi_processing(self):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("Multiprocessing is currently not possible on TPU.")
return False
else:
return True
|