Spaces:
Running
on
T4
Running
on
T4
File size: 33,909 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Iterable, List, Optional, Tuple, Union
import numpy as np
from .image_utils import (
ChannelDimension,
ImageInput,
get_channel_dimension_axis,
get_image_size,
infer_channel_dimension_format,
)
from .utils import ExplicitEnum, TensorType, is_jax_tensor, is_tf_tensor, is_torch_tensor
from .utils.import_utils import (
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
requires_backends,
)
if is_vision_available():
import PIL
from .image_utils import PILImageResampling
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
if is_flax_available():
import jax.numpy as jnp
def to_channel_dimension_format(
image: np.ndarray,
channel_dim: Union[ChannelDimension, str],
input_channel_dim: Optional[Union[ChannelDimension, str]] = None,
) -> np.ndarray:
"""
Converts `image` to the channel dimension format specified by `channel_dim`.
Args:
image (`numpy.ndarray`):
The image to have its channel dimension set.
channel_dim (`ChannelDimension`):
The channel dimension format to use.
input_channel_dim (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
Returns:
`np.ndarray`: The image with the channel dimension set to `channel_dim`.
"""
if not isinstance(image, np.ndarray):
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
if input_channel_dim is None:
input_channel_dim = infer_channel_dimension_format(image)
target_channel_dim = ChannelDimension(channel_dim)
if input_channel_dim == target_channel_dim:
return image
if target_channel_dim == ChannelDimension.FIRST:
image = image.transpose((2, 0, 1))
elif target_channel_dim == ChannelDimension.LAST:
image = image.transpose((1, 2, 0))
else:
raise ValueError("Unsupported channel dimension format: {}".format(channel_dim))
return image
def rescale(
image: np.ndarray,
scale: float,
data_format: Optional[ChannelDimension] = None,
dtype: np.dtype = np.float32,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescales `image` by `scale`.
Args:
image (`np.ndarray`):
The image to rescale.
scale (`float`):
The scale to use for rescaling the image.
data_format (`ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
dtype (`np.dtype`, *optional*, defaults to `np.float32`):
The dtype of the output image. Defaults to `np.float32`. Used for backwards compatibility with feature
extractors.
input_data_format (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
Returns:
`np.ndarray`: The rescaled image.
"""
if not isinstance(image, np.ndarray):
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
rescaled_image = image * scale
if data_format is not None:
rescaled_image = to_channel_dimension_format(rescaled_image, data_format, input_data_format)
rescaled_image = rescaled_image.astype(dtype)
return rescaled_image
def _rescale_for_pil_conversion(image):
"""
Detects whether or not the image needs to be rescaled before being converted to a PIL image.
The assumption is that if the image is of type `np.float` and all values are between 0 and 1, it needs to be
rescaled.
"""
if image.dtype == np.uint8:
do_rescale = False
elif np.allclose(image, image.astype(int)):
if np.all(0 <= image) and np.all(image <= 255):
do_rescale = False
else:
raise ValueError(
"The image to be converted to a PIL image contains values outside the range [0, 255], "
f"got [{image.min()}, {image.max()}] which cannot be converted to uint8."
)
elif np.all(0 <= image) and np.all(image <= 1):
do_rescale = True
else:
raise ValueError(
"The image to be converted to a PIL image contains values outside the range [0, 1], "
f"got [{image.min()}, {image.max()}] which cannot be converted to uint8."
)
return do_rescale
def to_pil_image(
image: Union[np.ndarray, "PIL.Image.Image", "torch.Tensor", "tf.Tensor", "jnp.ndarray"],
do_rescale: Optional[bool] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> "PIL.Image.Image":
"""
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
needed.
Args:
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor` or `tf.Tensor`):
The image to convert to the `PIL.Image` format.
do_rescale (`bool`, *optional*):
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will default
to `True` if the image type is a floating type and casting to `int` would result in a loss of precision,
and `False` otherwise.
input_data_format (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If unset, will use the inferred format from the input.
Returns:
`PIL.Image.Image`: The converted image.
"""
requires_backends(to_pil_image, ["vision"])
if isinstance(image, PIL.Image.Image):
return image
# Convert all tensors to numpy arrays before converting to PIL image
if is_torch_tensor(image) or is_tf_tensor(image):
image = image.numpy()
elif is_jax_tensor(image):
image = np.array(image)
elif not isinstance(image, np.ndarray):
raise ValueError("Input image type not supported: {}".format(type(image)))
# If the channel as been moved to first dim, we put it back at the end.
image = to_channel_dimension_format(image, ChannelDimension.LAST, input_data_format)
# If there is a single channel, we squeeze it, as otherwise PIL can't handle it.
image = np.squeeze(image, axis=-1) if image.shape[-1] == 1 else image
# PIL.Image can only store uint8 values so we rescale the image to be between 0 and 255 if needed.
do_rescale = _rescale_for_pil_conversion(image) if do_rescale is None else do_rescale
if do_rescale:
image = rescale(image, 255)
image = image.astype(np.uint8)
return PIL.Image.fromarray(image)
# Logic adapted from torchvision resizing logic: https://github.com/pytorch/vision/blob/511924c1ced4ce0461197e5caa64ce5b9e558aab/torchvision/transforms/functional.py#L366
def get_resize_output_image_size(
input_image: np.ndarray,
size: Union[int, Tuple[int, int], List[int], Tuple[int]],
default_to_square: bool = True,
max_size: Optional[int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> tuple:
"""
Find the target (height, width) dimension of the output image after resizing given the input image and the desired
size.
Args:
input_image (`np.ndarray`):
The image to resize.
size (`int` or `Tuple[int, int]` or List[int] or Tuple[int]):
The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be matched to
this.
If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
`size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to this
number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
default_to_square (`bool`, *optional*, defaults to `True`):
How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a square
(`size`,`size`). If set to `False`, will replicate
[`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
with support for resizing only the smallest edge and providing an optional `max_size`.
max_size (`int`, *optional*):
The maximum allowed for the longer edge of the resized image: if the longer edge of the image is greater
than `max_size` after being resized according to `size`, then the image is resized again so that the longer
edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller edge may be shorter
than `size`. Only used if `default_to_square` is `False`.
input_data_format (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If unset, will use the inferred format from the input.
Returns:
`tuple`: The target (height, width) dimension of the output image after resizing.
"""
if isinstance(size, (tuple, list)):
if len(size) == 2:
return tuple(size)
elif len(size) == 1:
# Perform same logic as if size was an int
size = size[0]
else:
raise ValueError("size must have 1 or 2 elements if it is a list or tuple")
if default_to_square:
return (size, size)
height, width = get_image_size(input_image, input_data_format)
short, long = (width, height) if width <= height else (height, width)
requested_new_short = size
new_short, new_long = requested_new_short, int(requested_new_short * long / short)
if max_size is not None:
if max_size <= requested_new_short:
raise ValueError(
f"max_size = {max_size} must be strictly greater than the requested "
f"size for the smaller edge size = {size}"
)
if new_long > max_size:
new_short, new_long = int(max_size * new_short / new_long), max_size
return (new_long, new_short) if width <= height else (new_short, new_long)
def resize(
image,
size: Tuple[int, int],
resample: "PILImageResampling" = None,
reducing_gap: Optional[int] = None,
data_format: Optional[ChannelDimension] = None,
return_numpy: bool = True,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
Args:
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
The image to resize.
size (`Tuple[int, int]`):
The size to use for resizing the image.
resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
The filter to user for resampling.
reducing_gap (`int`, *optional*):
Apply optimization by resizing the image in two steps. The bigger `reducing_gap`, the closer the result to
the fair resampling. See corresponding Pillow documentation for more details.
data_format (`ChannelDimension`, *optional*):
The channel dimension format of the output image. If unset, will use the inferred format from the input.
return_numpy (`bool`, *optional*, defaults to `True`):
Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is
returned.
input_data_format (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If unset, will use the inferred format from the input.
Returns:
`np.ndarray`: The resized image.
"""
requires_backends(resize, ["vision"])
resample = resample if resample is not None else PILImageResampling.BILINEAR
if not len(size) == 2:
raise ValueError("size must have 2 elements")
# For all transformations, we want to keep the same data format as the input image unless otherwise specified.
# The resized image from PIL will always have channels last, so find the input format first.
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
data_format = input_data_format if data_format is None else data_format
# To maintain backwards compatibility with the resizing done in previous image feature extractors, we use
# the pillow library to resize the image and then convert back to numpy
do_rescale = False
if not isinstance(image, PIL.Image.Image):
do_rescale = _rescale_for_pil_conversion(image)
image = to_pil_image(image, do_rescale=do_rescale, input_data_format=input_data_format)
height, width = size
# PIL images are in the format (width, height)
resized_image = image.resize((width, height), resample=resample, reducing_gap=reducing_gap)
if return_numpy:
resized_image = np.array(resized_image)
# If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
# so we need to add it back if necessary.
resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image
# The image is always in channels last format after converting from a PIL image
resized_image = to_channel_dimension_format(
resized_image, data_format, input_channel_dim=ChannelDimension.LAST
)
# If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to
# rescale it back to the original range.
resized_image = rescale(resized_image, 1 / 255) if do_rescale else resized_image
return resized_image
def normalize(
image: np.ndarray,
mean: Union[float, Iterable[float]],
std: Union[float, Iterable[float]],
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Normalizes `image` using the mean and standard deviation specified by `mean` and `std`.
image = (image - mean) / std
Args:
image (`np.ndarray`):
The image to normalize.
mean (`float` or `Iterable[float]`):
The mean to use for normalization.
std (`float` or `Iterable[float]`):
The standard deviation to use for normalization.
data_format (`ChannelDimension`, *optional*):
The channel dimension format of the output image. If unset, will use the inferred format from the input.
input_data_format (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If unset, will use the inferred format from the input.
"""
if not isinstance(image, np.ndarray):
raise ValueError("image must be a numpy array")
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
channel_axis = get_channel_dimension_axis(image, input_data_format=input_data_format)
num_channels = image.shape[channel_axis]
if isinstance(mean, Iterable):
if len(mean) != num_channels:
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
else:
mean = [mean] * num_channels
mean = np.array(mean, dtype=image.dtype)
if isinstance(std, Iterable):
if len(std) != num_channels:
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
else:
std = [std] * num_channels
std = np.array(std, dtype=image.dtype)
if input_data_format == ChannelDimension.LAST:
image = (image - mean) / std
else:
image = ((image.T - mean) / std).T
image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
return image
def center_crop(
image: np.ndarray,
size: Tuple[int, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
return_numpy: Optional[bool] = None,
) -> np.ndarray:
"""
Crops the `image` to the specified `size` using a center crop. Note that if the image is too small to be cropped to
the size given, it will be padded (so the returned result will always be of size `size`).
Args:
image (`np.ndarray`):
The image to crop.
size (`Tuple[int, int]`):
The target size for the cropped image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
return_numpy (`bool`, *optional*):
Whether or not to return the cropped image as a numpy array. Used for backwards compatibility with the
previous ImageFeatureExtractionMixin method.
- Unset: will return the same type as the input image.
- `True`: will return a numpy array.
- `False`: will return a `PIL.Image.Image` object.
Returns:
`np.ndarray`: The cropped image.
"""
requires_backends(center_crop, ["vision"])
if return_numpy is not None:
warnings.warn("return_numpy is deprecated and will be removed in v.4.33", FutureWarning)
return_numpy = True if return_numpy is None else return_numpy
if not isinstance(image, np.ndarray):
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
if not isinstance(size, Iterable) or len(size) != 2:
raise ValueError("size must have 2 elements representing the height and width of the output image")
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
output_data_format = data_format if data_format is not None else input_data_format
# We perform the crop in (C, H, W) format and then convert to the output format
image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format)
orig_height, orig_width = get_image_size(image, ChannelDimension.FIRST)
crop_height, crop_width = size
crop_height, crop_width = int(crop_height), int(crop_width)
# In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
top = (orig_height - crop_height) // 2
bottom = top + crop_height
# In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.
left = (orig_width - crop_width) // 2
right = left + crop_width
# Check if cropped area is within image boundaries
if top >= 0 and bottom <= orig_height and left >= 0 and right <= orig_width:
image = image[..., top:bottom, left:right]
image = to_channel_dimension_format(image, output_data_format, ChannelDimension.FIRST)
return image
# Otherwise, we may need to pad if the image is too small. Oh joy...
new_height = max(crop_height, orig_height)
new_width = max(crop_width, orig_width)
new_shape = image.shape[:-2] + (new_height, new_width)
new_image = np.zeros_like(image, shape=new_shape)
# If the image is too small, pad it with zeros
top_pad = (new_height - orig_height) // 2
bottom_pad = top_pad + orig_height
left_pad = (new_width - orig_width) // 2
right_pad = left_pad + orig_width
new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image
top += top_pad
bottom += top_pad
left += left_pad
right += left_pad
new_image = new_image[..., max(0, top) : min(new_height, bottom), max(0, left) : min(new_width, right)]
new_image = to_channel_dimension_format(new_image, output_data_format, ChannelDimension.FIRST)
if not return_numpy:
new_image = to_pil_image(new_image)
return new_image
def _center_to_corners_format_torch(bboxes_center: "torch.Tensor") -> "torch.Tensor":
center_x, center_y, width, height = bboxes_center.unbind(-1)
bbox_corners = torch.stack(
# top left x, top left y, bottom right x, bottom right y
[(center_x - 0.5 * width), (center_y - 0.5 * height), (center_x + 0.5 * width), (center_y + 0.5 * height)],
dim=-1,
)
return bbox_corners
def _center_to_corners_format_numpy(bboxes_center: np.ndarray) -> np.ndarray:
center_x, center_y, width, height = bboxes_center.T
bboxes_corners = np.stack(
# top left x, top left y, bottom right x, bottom right y
[center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height],
axis=-1,
)
return bboxes_corners
def _center_to_corners_format_tf(bboxes_center: "tf.Tensor") -> "tf.Tensor":
center_x, center_y, width, height = tf.unstack(bboxes_center, axis=-1)
bboxes_corners = tf.stack(
# top left x, top left y, bottom right x, bottom right y
[center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height],
axis=-1,
)
return bboxes_corners
# 2 functions below inspired by https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
def center_to_corners_format(bboxes_center: TensorType) -> TensorType:
"""
Converts bounding boxes from center format to corners format.
center format: contains the coordinate for the center of the box and its width, height dimensions
(center_x, center_y, width, height)
corners format: contains the coodinates for the top-left and bottom-right corners of the box
(top_left_x, top_left_y, bottom_right_x, bottom_right_y)
"""
# Function is used during model forward pass, so we use the input framework if possible, without
# converting to numpy
if is_torch_tensor(bboxes_center):
return _center_to_corners_format_torch(bboxes_center)
elif isinstance(bboxes_center, np.ndarray):
return _center_to_corners_format_numpy(bboxes_center)
elif is_tf_tensor(bboxes_center):
return _center_to_corners_format_tf(bboxes_center)
raise ValueError(f"Unsupported input type {type(bboxes_center)}")
def _corners_to_center_format_torch(bboxes_corners: "torch.Tensor") -> "torch.Tensor":
top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.unbind(-1)
b = [
(top_left_x + bottom_right_x) / 2, # center x
(top_left_y + bottom_right_y) / 2, # center y
(bottom_right_x - top_left_x), # width
(bottom_right_y - top_left_y), # height
]
return torch.stack(b, dim=-1)
def _corners_to_center_format_numpy(bboxes_corners: np.ndarray) -> np.ndarray:
top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.T
bboxes_center = np.stack(
[
(top_left_x + bottom_right_x) / 2, # center x
(top_left_y + bottom_right_y) / 2, # center y
(bottom_right_x - top_left_x), # width
(bottom_right_y - top_left_y), # height
],
axis=-1,
)
return bboxes_center
def _corners_to_center_format_tf(bboxes_corners: "tf.Tensor") -> "tf.Tensor":
top_left_x, top_left_y, bottom_right_x, bottom_right_y = tf.unstack(bboxes_corners, axis=-1)
bboxes_center = tf.stack(
[
(top_left_x + bottom_right_x) / 2, # center x
(top_left_y + bottom_right_y) / 2, # center y
(bottom_right_x - top_left_x), # width
(bottom_right_y - top_left_y), # height
],
axis=-1,
)
return bboxes_center
def corners_to_center_format(bboxes_corners: TensorType) -> TensorType:
"""
Converts bounding boxes from corners format to center format.
corners format: contains the coodinates for the top-left and bottom-right corners of the box
(top_left_x, top_left_y, bottom_right_x, bottom_right_y)
center format: contains the coordinate for the center of the box and its the width, height dimensions
(center_x, center_y, width, height)
"""
# Inverse function accepts different input types so implemented here too
if is_torch_tensor(bboxes_corners):
return _corners_to_center_format_torch(bboxes_corners)
elif isinstance(bboxes_corners, np.ndarray):
return _corners_to_center_format_numpy(bboxes_corners)
elif is_tf_tensor(bboxes_corners):
return _corners_to_center_format_tf(bboxes_corners)
raise ValueError(f"Unsupported input type {type(bboxes_corners)}")
# 2 functions below copied from https://github.com/cocodataset/panopticapi/blob/master/panopticapi/utils.py
# Copyright (c) 2018, Alexander Kirillov
# All rights reserved.
def rgb_to_id(color):
"""
Converts RGB color to unique ID.
"""
if isinstance(color, np.ndarray) and len(color.shape) == 3:
if color.dtype == np.uint8:
color = color.astype(np.int32)
return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2]
return int(color[0] + 256 * color[1] + 256 * 256 * color[2])
def id_to_rgb(id_map):
"""
Converts unique ID to RGB color.
"""
if isinstance(id_map, np.ndarray):
id_map_copy = id_map.copy()
rgb_shape = tuple(list(id_map.shape) + [3])
rgb_map = np.zeros(rgb_shape, dtype=np.uint8)
for i in range(3):
rgb_map[..., i] = id_map_copy % 256
id_map_copy //= 256
return rgb_map
color = []
for _ in range(3):
color.append(id_map % 256)
id_map //= 256
return color
class PaddingMode(ExplicitEnum):
"""
Enum class for the different padding modes to use when padding images.
"""
CONSTANT = "constant"
REFLECT = "reflect"
REPLICATE = "replicate"
SYMMETRIC = "symmetric"
def pad(
image: np.ndarray,
padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
mode: PaddingMode = PaddingMode.CONSTANT,
constant_values: Union[float, Iterable[float]] = 0.0,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pads the `image` with the specified (height, width) `padding` and `mode`.
Args:
image (`np.ndarray`):
The image to pad.
padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
Padding to apply to the edges of the height, width axes. Can be one of three formats:
- `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
- `((before, after),)` yields same before and after pad for height and width.
- `(pad,)` or int is a shortcut for before = after = pad width for all axes.
mode (`PaddingMode`):
The padding mode to use. Can be one of:
- `"constant"`: pads with a constant value.
- `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
vector along each axis.
- `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
- `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
`np.ndarray`: The padded image.
"""
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
def _expand_for_data_format(values):
"""
Convert values to be in the format expected by np.pad based on the data format.
"""
if isinstance(values, (int, float)):
values = ((values, values), (values, values))
elif isinstance(values, tuple) and len(values) == 1:
values = ((values[0], values[0]), (values[0], values[0]))
elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], int):
values = (values, values)
elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], tuple):
values = values
else:
raise ValueError(f"Unsupported format: {values}")
# add 0 for channel dimension
values = ((0, 0), *values) if input_data_format == ChannelDimension.FIRST else (*values, (0, 0))
# Add additional padding if there's a batch dimension
values = (0, *values) if image.ndim == 4 else values
return values
padding = _expand_for_data_format(padding)
if mode == PaddingMode.CONSTANT:
constant_values = _expand_for_data_format(constant_values)
image = np.pad(image, padding, mode="constant", constant_values=constant_values)
elif mode == PaddingMode.REFLECT:
image = np.pad(image, padding, mode="reflect")
elif mode == PaddingMode.REPLICATE:
image = np.pad(image, padding, mode="edge")
elif mode == PaddingMode.SYMMETRIC:
image = np.pad(image, padding, mode="symmetric")
else:
raise ValueError(f"Invalid padding mode: {mode}")
image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
return image
# TODO (Amy): Accept 1/3/4 channel numpy array as input and return np.array as default
def convert_to_rgb(image: ImageInput) -> ImageInput:
"""
Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image
as is.
Args:
image (Image):
The image to convert.
"""
requires_backends(convert_to_rgb, ["vision"])
if not isinstance(image, PIL.Image.Image):
return image
image = image.convert("RGB")
return image
def flip_channel_order(
image: np.ndarray,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Flips the channel order of the image.
If the image is in RGB format, it will be converted to BGR and vice versa.
Args:
image (`np.ndarray`):
The image to flip.
data_format (`ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
"""
input_data_format = infer_channel_dimension_format(image) if input_data_format is None else input_data_format
if input_data_format == ChannelDimension.LAST:
image = image[..., ::-1]
elif input_data_format == ChannelDimension.FIRST:
image = image[::-1, ...]
else:
raise ValueError(f"Unsupported channel dimension: {input_data_format}")
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
|