File size: 16,507 Bytes
7a7f9d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import os
import time
from datetime import timedelta
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.config import Config
from mmengine.utils import ProgressBar
from transformers import AutoConfig, AutoModel
class RamDataset(torch.utils.data.Dataset):
def __init__(self, data_path, is_train=True, num_relation_classes=56):
super().__init__()
self.num_relation_classes = num_relation_classes
data = np.load(data_path, allow_pickle=True)
self.samples = data["arr_0"]
sample_num = self.samples.size
self.sample_idx_list = []
for idx in range(sample_num):
if self.samples[idx]["is_train"] == is_train:
self.sample_idx_list.append(idx)
def __getitem__(self, idx):
sample = self.samples[self.sample_idx_list[idx]]
object_num = sample["feat"].shape[0]
embedding = torch.from_numpy(sample["feat"])
gt_rels = sample["relations"]
rel_target = self._get_target(object_num, gt_rels)
return embedding, rel_target, gt_rels
def __len__(self):
return len(self.sample_idx_list)
def _get_target(self, object_num, gt_rels):
rel_target = torch.zeros([self.num_relation_classes, object_num, object_num])
for ii, jj, cls_relationship in gt_rels:
rel_target[cls_relationship, ii, jj] = 1
return rel_target
class RamModel(nn.Module):
def __init__(
self,
pretrained_model_name_or_path,
load_pretrained_weights=True,
num_transformer_layer=2,
input_feature_size=256,
output_feature_size=768,
cls_feature_size=512,
num_relation_classes=56,
pred_type="attention",
loss_type="bce",
):
super().__init__()
# 0. config
self.cls_feature_size = cls_feature_size
self.num_relation_classes = num_relation_classes
self.pred_type = pred_type
self.loss_type = loss_type
# 1. fc input and output
self.fc_input = nn.Sequential(
nn.Linear(input_feature_size, output_feature_size),
nn.LayerNorm(output_feature_size),
)
self.fc_output = nn.Sequential(
nn.Linear(output_feature_size, output_feature_size),
nn.LayerNorm(output_feature_size),
)
# 2. transformer model
if load_pretrained_weights:
self.model = AutoModel.from_pretrained(pretrained_model_name_or_path)
else:
config = AutoConfig.from_pretrained(pretrained_model_name_or_path)
self.model = AutoModel.from_config(config)
if num_transformer_layer != "all" and isinstance(num_transformer_layer, int):
self.model.encoder.layer = self.model.encoder.layer[:num_transformer_layer]
# 3. predict head
self.cls_sub = nn.Linear(output_feature_size, cls_feature_size * num_relation_classes)
self.cls_obj = nn.Linear(output_feature_size, cls_feature_size * num_relation_classes)
# 4. loss
if self.loss_type == "bce":
self.bce_loss = nn.BCEWithLogitsLoss()
elif self.loss_type == "multi_label_ce":
print("Use Multi Label Cross Entropy Loss.")
def forward(self, embeds, attention_mask=None):
"""
embeds: (batch_size, token_num, feature_size)
attention_mask: (batch_size, token_num)
"""
# 1. fc input
embeds = self.fc_input(embeds)
# 2. transformer model
position_ids = torch.ones([1, embeds.shape[1]]).to(embeds.device).to(torch.long)
outputs = self.model.forward(inputs_embeds=embeds, attention_mask=attention_mask, position_ids=position_ids)
embeds = outputs["last_hidden_state"]
# 3. fc output
embeds = self.fc_output(embeds)
# 4. predict head
batch_size, token_num, feature_size = embeds.shape
sub_embeds = self.cls_sub(embeds).reshape([batch_size, token_num, self.num_relation_classes, self.cls_feature_size]).permute([0, 2, 1, 3])
obj_embeds = self.cls_obj(embeds).reshape([batch_size, token_num, self.num_relation_classes, self.cls_feature_size]).permute([0, 2, 1, 3])
if self.pred_type == "attention":
cls_pred = sub_embeds @ torch.transpose(obj_embeds, 2, 3) / self.cls_feature_size**0.5 # noqa
elif self.pred_type == "einsum":
cls_pred = torch.einsum("nrsc,nroc->nrso", sub_embeds, obj_embeds)
return cls_pred
def loss(self, pred, target, attention_mask):
loss_dict = dict()
batch_size, relation_num, _, _ = pred.shape
mask = torch.zeros_like(pred).to(pred.device)
for idx in range(batch_size):
n = torch.sum(attention_mask[idx]).to(torch.int)
mask[idx, :, :n, :n] = 1
pred = pred * mask - 9999 * (1 - mask)
if self.loss_type == "bce":
loss = self.bce_loss(pred, target)
elif self.loss_type == "multi_label_ce":
input_tensor = torch.permute(pred, (1, 0, 2, 3))
target_tensor = torch.permute(target, (1, 0, 2, 3))
input_tensor = pred.reshape([relation_num, -1])
target_tensor = target.reshape([relation_num, -1])
loss = self.multilabel_categorical_crossentropy(target_tensor, input_tensor)
weight = loss / loss.max()
loss = loss * weight
loss = loss.mean()
loss_dict["loss"] = loss
# running metric
recall_20 = get_recall_N(pred, target, object_num=20)
loss_dict["recall@20"] = recall_20
return loss_dict
def multilabel_categorical_crossentropy(self, y_true, y_pred):
"""
https://kexue.fm/archives/7359
"""
y_pred = (1 - 2 * y_true) * y_pred
y_pred_neg = y_pred - y_true * 9999
y_pred_pos = y_pred - (1 - y_true) * 9999
zeros = torch.zeros_like(y_pred[..., :1])
y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
return neg_loss + pos_loss
def get_recall_N(y_pred, y_true, object_num=20):
"""
y_pred: [batch_size, 56, object_num, object_num]
y_true: [batch_size, 56, object_num, object_num]
"""
device = y_pred.device
recall_list = []
for idx in range(len(y_true)):
sample_y_true = []
sample_y_pred = []
# find topk
_, topk_indices = torch.topk(
y_true[idx : idx + 1].reshape(
[
-1,
]
),
k=object_num,
)
for index in topk_indices:
pred_cls = index // (y_true.shape[2] ** 2)
index_subject_object = index % (y_true.shape[2] ** 2)
pred_subject = index_subject_object // y_true.shape[2]
pred_object = index_subject_object % y_true.shape[2]
if y_true[idx, pred_cls, pred_subject, pred_object] == 0:
continue
sample_y_true.append([pred_subject, pred_object, pred_cls])
# find topk
_, topk_indices = torch.topk(
y_pred[idx : idx + 1].reshape(
[
-1,
]
),
k=object_num,
)
for index in topk_indices:
pred_cls = index // (y_pred.shape[2] ** 2)
index_subject_object = index % (y_pred.shape[2] ** 2)
pred_subject = index_subject_object // y_pred.shape[2]
pred_object = index_subject_object % y_pred.shape[2]
sample_y_pred.append([pred_subject, pred_object, pred_cls])
recall = len([x for x in sample_y_pred if x in sample_y_true]) / (len(sample_y_true) + 1e-8)
recall_list.append(recall)
recall = torch.tensor(recall_list).to(device).mean() * 100
return recall
class RamTrainer(object):
def __init__(self, config):
self.config = config
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self._build_dataset()
self._build_dataloader()
self._build_model()
self._build_optimizer()
self._build_lr_scheduler()
def _build_dataset(self):
self.dataset = RamDataset(**self.config.dataset)
def _build_dataloader(self):
self.dataloader = torch.utils.data.DataLoader(
self.dataset,
batch_size=self.config.dataloader.batch_size,
shuffle=True if self.config.dataset.is_train else False,
)
def _build_model(self):
self.model = RamModel(**self.config.model).to(self.device)
if self.config.load_from is not None:
self.model.load_state_dict(torch.load(self.config.load_from))
self.model.train()
def _build_optimizer(self):
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.config.optim.lr, weight_decay=self.config.optim.weight_decay, eps=self.config.optim.eps, betas=self.config.optim.betas)
def _build_lr_scheduler(self):
self.lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=self.config.optim.lr_scheduler.step, gamma=self.config.optim.lr_scheduler.gamma)
def train(self):
t_start = time.time()
running_avg_loss = 0
for epoch_idx in range(self.config.num_epoch):
for batch_idx, batch_data in enumerate(self.dataloader):
batch_embeds = batch_data[0].to(torch.float32).to(self.device)
batch_target = batch_data[1].to(torch.float32).to(self.device)
attention_mask = batch_embeds.new_ones((batch_embeds.shape[0], batch_embeds.shape[1]))
batch_pred = self.model.forward(batch_embeds, attention_mask)
loss_dict = self.model.loss(batch_pred, batch_target, attention_mask)
loss = loss_dict["loss"]
recall_20 = loss_dict["recall@20"]
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.optim.max_norm, self.config.optim.norm_type)
self.optimizer.step()
running_avg_loss += loss.item()
if batch_idx % 100 == 0:
t_current = time.time()
num_finished_step = epoch_idx * self.config.num_epoch * len(self.dataloader) + batch_idx + 1
num_to_do_step = (self.config.num_epoch - epoch_idx - 1) * len(self.dataloader) + (len(self.dataloader) - batch_idx - 1)
avg_speed = num_finished_step / (t_current - t_start)
eta = num_to_do_step / avg_speed
print(
"ETA={:0>8}, Epoch={}, Batch={}/{}, LR={}, Loss={:.4f}, RunningAvgLoss={:.4f}, Recall@20={:.2f}%".format(
str(timedelta(seconds=int(eta))), epoch_idx + 1, batch_idx, len(self.dataloader), self.lr_scheduler.get_last_lr()[0], loss.item(), running_avg_loss / num_finished_step, recall_20.item()
)
)
self.lr_scheduler.step()
if not os.path.exists(self.config.output_dir):
os.makedirs(self.config.output_dir)
save_path = os.path.join(self.config.output_dir, "epoch_{}.pth".format(epoch_idx + 1))
print("Save epoch={} checkpoint to {}".format(epoch_idx + 1, save_path))
torch.save(self.model.state_dict(), save_path)
return save_path
class RamPredictor(object):
def __init__(self, config):
self.config = config
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self._build_dataset()
self._build_dataloader()
self._build_model()
def _build_dataset(self):
self.dataset = RamDataset(**self.config.dataset)
def _build_dataloader(self):
self.dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.config.dataloader.batch_size, shuffle=False)
def _build_model(self):
self.model = RamModel(**self.config.model).to(self.device)
if self.config.load_from is not None:
self.model.load_state_dict(torch.load(self.config.load_from))
self.model.eval()
def predict(self, batch_embeds, pred_keep_num=100):
"""
Parameters
----------
batch_embeds: (batch_size=1, token_num, feature_size)
pred_keep_num: int
Returns
-------
batch_pred: (batch_size, relation_num, object_num, object_num)
pred_rels: [[sub_id, obj_id, rel_id], ...]
"""
if not isinstance(batch_embeds, torch.Tensor):
batch_embeds = torch.asarray(batch_embeds)
batch_embeds = batch_embeds.to(torch.float32).to(self.device)
attention_mask = batch_embeds.new_ones((batch_embeds.shape[0], batch_embeds.shape[1]))
batch_pred = self.model.forward(batch_embeds, attention_mask)
for idx_i in range(batch_pred.shape[2]):
batch_pred[:, :, idx_i, idx_i] = -9999
batch_pred = batch_pred.sigmoid()
pred_rels = []
_, topk_indices = torch.topk(
batch_pred.reshape(
[
-1,
]
),
k=pred_keep_num,
)
# subject, object, relation
for index in topk_indices:
pred_relation = index // (batch_pred.shape[2] ** 2)
index_subject_object = index % (batch_pred.shape[2] ** 2)
pred_subject = index_subject_object // batch_pred.shape[2]
pred_object = index_subject_object % batch_pred.shape[2]
pred = [pred_subject.item(), pred_object.item(), pred_relation.item()]
pred_rels.append(pred)
return batch_pred, pred_rels
def eval(self):
sum_recall_20 = 0.0
sum_recall_50 = 0.0
sum_recall_100 = 0.0
prog_bar = ProgressBar(len(self.dataloader))
for batch_idx, batch_data in enumerate(self.dataloader):
batch_embeds = batch_data[0]
batch_target = batch_data[1]
gt_rels = batch_data[2]
batch_pred, pred_rels = self.predict(batch_embeds)
this_recall_20 = get_recall_N(batch_pred, batch_target, object_num=20)
this_recall_50 = get_recall_N(batch_pred, batch_target, object_num=50)
this_recall_100 = get_recall_N(batch_pred, batch_target, object_num=100)
sum_recall_20 += this_recall_20.item()
sum_recall_50 += this_recall_50.item()
sum_recall_100 += this_recall_100.item()
prog_bar.update()
recall_20 = sum_recall_20 / len(self.dataloader)
recall_50 = sum_recall_50 / len(self.dataloader)
recall_100 = sum_recall_100 / len(self.dataloader)
metric = {
"recall_20": recall_20,
"recall_50": recall_50,
"recall_100": recall_100,
}
return metric
if __name__ == "__main__":
# Config
config = dict(
dataset=dict(
data_path="./data/feat_0420.npz",
is_train=True,
num_relation_classes=56,
),
dataloader=dict(
batch_size=4,
),
model=dict(
pretrained_model_name_or_path="bert-base-uncased",
load_pretrained_weights=True,
num_transformer_layer=2,
input_feature_size=256,
output_feature_size=768,
cls_feature_size=512,
num_relation_classes=56,
pred_type="attention",
loss_type="multi_label_ce",
),
optim=dict(
lr=1e-4,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999),
max_norm=0.01,
norm_type=2,
lr_scheduler=dict(
step=[6, 10],
gamma=0.1,
),
),
num_epoch=12,
output_dir="./work_dirs",
load_from=None,
)
# Train
config = Config(config)
trainer = RamTrainer(config)
last_model_path = trainer.train()
# Test/Eval
config.dataset.is_train = False
config.load_from = last_model_path
predictor = RamPredictor(config)
metric = predictor.eval()
print(metric)
|