File size: 32,360 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team and the librosa & torchaudio authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Audio processing functions to extract features from audio waveforms. This code is pure numpy to support all frameworks
and remove unnecessary dependencies.
"""
import warnings
from typing import Optional, Union

import numpy as np


def hertz_to_mel(freq: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]:
    """
    Convert frequency from hertz to mels.

    Args:
        freq (`float` or `np.ndarray`):
            The frequency, or multiple frequencies, in hertz (Hz).
        mel_scale (`str`, *optional*, defaults to `"htk"`):
            The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.

    Returns:
        `float` or `np.ndarray`: The frequencies on the mel scale.
    """

    if mel_scale not in ["slaney", "htk", "kaldi"]:
        raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')

    if mel_scale == "htk":
        return 2595.0 * np.log10(1.0 + (freq / 700.0))
    elif mel_scale == "kaldi":
        return 1127.0 * np.log(1.0 + (freq / 700.0))

    min_log_hertz = 1000.0
    min_log_mel = 15.0
    logstep = 27.0 / np.log(6.4)
    mels = 3.0 * freq / 200.0

    if isinstance(freq, np.ndarray):
        log_region = freq >= min_log_hertz
        mels[log_region] = min_log_mel + np.log(freq[log_region] / min_log_hertz) * logstep
    elif freq >= min_log_hertz:
        mels = min_log_mel + np.log(freq / min_log_hertz) * logstep

    return mels


def mel_to_hertz(mels: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]:
    """
    Convert frequency from mels to hertz.

    Args:
        mels (`float` or `np.ndarray`):
            The frequency, or multiple frequencies, in mels.
        mel_scale (`str`, *optional*, `"htk"`):
            The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.

    Returns:
        `float` or `np.ndarray`: The frequencies in hertz.
    """

    if mel_scale not in ["slaney", "htk", "kaldi"]:
        raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')

    if mel_scale == "htk":
        return 700.0 * (np.power(10, mels / 2595.0) - 1.0)
    elif mel_scale == "kaldi":
        return 700.0 * (np.exp(mels / 1127.0) - 1.0)

    min_log_hertz = 1000.0
    min_log_mel = 15.0
    logstep = np.log(6.4) / 27.0
    freq = 200.0 * mels / 3.0

    if isinstance(mels, np.ndarray):
        log_region = mels >= min_log_mel
        freq[log_region] = min_log_hertz * np.exp(logstep * (mels[log_region] - min_log_mel))
    elif mels >= min_log_mel:
        freq = min_log_hertz * np.exp(logstep * (mels - min_log_mel))

    return freq


def _create_triangular_filter_bank(fft_freqs: np.ndarray, filter_freqs: np.ndarray) -> np.ndarray:
    """
    Creates a triangular filter bank.

    Adapted from *torchaudio* and *librosa*.

    Args:
        fft_freqs (`np.ndarray` of shape `(num_frequency_bins,)`):
            Discrete frequencies of the FFT bins in Hz.
        filter_freqs (`np.ndarray` of shape `(num_mel_filters,)`):
            Center frequencies of the triangular filters to create, in Hz.

    Returns:
        `np.ndarray` of shape `(num_frequency_bins, num_mel_filters)`
    """
    filter_diff = np.diff(filter_freqs)
    slopes = np.expand_dims(filter_freqs, 0) - np.expand_dims(fft_freqs, 1)
    down_slopes = -slopes[:, :-2] / filter_diff[:-1]
    up_slopes = slopes[:, 2:] / filter_diff[1:]
    return np.maximum(np.zeros(1), np.minimum(down_slopes, up_slopes))


def mel_filter_bank(
    num_frequency_bins: int,
    num_mel_filters: int,
    min_frequency: float,
    max_frequency: float,
    sampling_rate: int,
    norm: Optional[str] = None,
    mel_scale: str = "htk",
    triangularize_in_mel_space: bool = False,
) -> np.ndarray:
    """
    Creates a frequency bin conversion matrix used to obtain a mel spectrogram. This is called a *mel filter bank*, and
    various implementation exist, which differ in the number of filters, the shape of the filters, the way the filters
    are spaced, the bandwidth of the filters, and the manner in which the spectrum is warped. The goal of these
    features is to approximate the non-linear human perception of the variation in pitch with respect to the frequency.

    Different banks of mel filters were introduced in the literature. The following variations are supported:

    - MFCC FB-20: introduced in 1980 by Davis and Mermelstein, it assumes a sampling frequency of 10 kHz and a speech
      bandwidth of `[0, 4600]` Hz.
    - MFCC FB-24 HTK: from the Cambridge HMM Toolkit (HTK) (1995) uses a filter bank of 24 filters for a speech
      bandwidth of `[0, 8000]` Hz. This assumes sampling rate ≥ 16 kHz.
    - MFCC FB-40: from the Auditory Toolbox for MATLAB written by Slaney in 1998, assumes a sampling rate of 16 kHz and
      speech bandwidth of `[133, 6854]` Hz. This version also includes area normalization.
    - HFCC-E FB-29 (Human Factor Cepstral Coefficients) of Skowronski and Harris (2004), assumes a sampling rate of
      12.5 kHz and speech bandwidth of `[0, 6250]` Hz.

    This code is adapted from *torchaudio* and *librosa*. Note that the default parameters of torchaudio's
    `melscale_fbanks` implement the `"htk"` filters while librosa uses the `"slaney"` implementation.

    Args:
        num_frequency_bins (`int`):
            Number of frequencies used to compute the spectrogram (should be the same as in `stft`).
        num_mel_filters (`int`):
            Number of mel filters to generate.
        min_frequency (`float`):
            Lowest frequency of interest in Hz.
        max_frequency (`float`):
            Highest frequency of interest in Hz. This should not exceed `sampling_rate / 2`.
        sampling_rate (`int`):
            Sample rate of the audio waveform.
        norm (`str`, *optional*):
            If `"slaney"`, divide the triangular mel weights by the width of the mel band (area normalization).
        mel_scale (`str`, *optional*, defaults to `"htk"`):
            The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
        triangularize_in_mel_space (`bool`, *optional*, defaults to `False`):
            If this option is enabled, the triangular filter is applied in mel space rather than frequency space. This
            should be set to `true` in order to get the same results as `torchaudio` when computing mel filters.

    Returns:
        `np.ndarray` of shape (`num_frequency_bins`, `num_mel_filters`): Triangular filter bank matrix. This is a
        projection matrix to go from a spectrogram to a mel spectrogram.
    """
    if norm is not None and norm != "slaney":
        raise ValueError('norm must be one of None or "slaney"')

    # center points of the triangular mel filters
    mel_min = hertz_to_mel(min_frequency, mel_scale=mel_scale)
    mel_max = hertz_to_mel(max_frequency, mel_scale=mel_scale)
    mel_freqs = np.linspace(mel_min, mel_max, num_mel_filters + 2)
    filter_freqs = mel_to_hertz(mel_freqs, mel_scale=mel_scale)

    if triangularize_in_mel_space:
        # frequencies of FFT bins in Hz, but filters triangularized in mel space
        fft_bin_width = sampling_rate / (num_frequency_bins * 2)
        fft_freqs = hertz_to_mel(fft_bin_width * np.arange(num_frequency_bins), mel_scale=mel_scale)
        filter_freqs = mel_freqs
    else:
        # frequencies of FFT bins in Hz
        fft_freqs = np.linspace(0, sampling_rate // 2, num_frequency_bins)

    mel_filters = _create_triangular_filter_bank(fft_freqs, filter_freqs)

    if norm is not None and norm == "slaney":
        # Slaney-style mel is scaled to be approx constant energy per channel
        enorm = 2.0 / (filter_freqs[2 : num_mel_filters + 2] - filter_freqs[:num_mel_filters])
        mel_filters *= np.expand_dims(enorm, 0)

    if (mel_filters.max(axis=0) == 0.0).any():
        warnings.warn(
            "At least one mel filter has all zero values. "
            f"The value for `num_mel_filters` ({num_mel_filters}) may be set too high. "
            f"Or, the value for `num_frequency_bins` ({num_frequency_bins}) may be set too low."
        )

    return mel_filters


def optimal_fft_length(window_length: int) -> int:
    """
    Finds the best FFT input size for a given `window_length`. This function takes a given window length and, if not
    already a power of two, rounds it up to the next power or two.

    The FFT algorithm works fastest when the length of the input is a power of two, which may be larger than the size
    of the window or analysis frame. For example, if the window is 400 samples, using an FFT input size of 512 samples
    is more optimal than an FFT size of 400 samples. Using a larger FFT size does not affect the detected frequencies,
    it simply gives a higher frequency resolution (i.e. the frequency bins are smaller).
    """
    return 2 ** int(np.ceil(np.log2(window_length)))


def window_function(
    window_length: int,
    name: str = "hann",
    periodic: bool = True,
    frame_length: Optional[int] = None,
    center: bool = True,
) -> np.ndarray:
    """
    Returns an array containing the specified window. This window is intended to be used with `stft`.

    The following window types are supported:

        - `"boxcar"`: a rectangular window
        - `"hamming"`: the Hamming window
        - `"hann"`: the Hann window
        - `"povey"`: the Povey window

    Args:
        window_length (`int`):
            The length of the window in samples.
        name (`str`, *optional*, defaults to `"hann"`):
            The name of the window function.
        periodic (`bool`, *optional*, defaults to `True`):
            Whether the window is periodic or symmetric.
        frame_length (`int`, *optional*):
            The length of the analysis frames in samples. Provide a value for `frame_length` if the window is smaller
            than the frame length, so that it will be zero-padded.
        center (`bool`, *optional*, defaults to `True`):
            Whether to center the window inside the FFT buffer. Only used when `frame_length` is provided.

    Returns:
        `np.ndarray` of shape `(window_length,)` or `(frame_length,)` containing the window.
    """
    length = window_length + 1 if periodic else window_length

    if name == "boxcar":
        window = np.ones(length)
    elif name in ["hamming", "hamming_window"]:
        window = np.hamming(length)
    elif name in ["hann", "hann_window"]:
        window = np.hanning(length)
    elif name in ["povey"]:
        window = np.power(np.hanning(length), 0.85)
    else:
        raise ValueError(f"Unknown window function '{name}'")

    if periodic:
        window = window[:-1]

    if frame_length is None:
        return window

    if window_length > frame_length:
        raise ValueError(
            f"Length of the window ({window_length}) may not be larger than frame_length ({frame_length})"
        )

    padded_window = np.zeros(frame_length)
    offset = (frame_length - window_length) // 2 if center else 0
    padded_window[offset : offset + window_length] = window
    return padded_window


# TODO This method does not support batching yet as we are mainly focused on inference.
def spectrogram(
    waveform: np.ndarray,
    window: np.ndarray,
    frame_length: int,
    hop_length: int,
    fft_length: Optional[int] = None,
    power: Optional[float] = 1.0,
    center: bool = True,
    pad_mode: str = "reflect",
    onesided: bool = True,
    preemphasis: Optional[float] = None,
    mel_filters: Optional[np.ndarray] = None,
    mel_floor: float = 1e-10,
    log_mel: Optional[str] = None,
    reference: float = 1.0,
    min_value: float = 1e-10,
    db_range: Optional[float] = None,
    remove_dc_offset: Optional[bool] = None,
    dtype: np.dtype = np.float32,
) -> np.ndarray:
    """
    Calculates a spectrogram over one waveform using the Short-Time Fourier Transform.

    This function can create the following kinds of spectrograms:

      - amplitude spectrogram (`power = 1.0`)
      - power spectrogram (`power = 2.0`)
      - complex-valued spectrogram (`power = None`)
      - log spectrogram (use `log_mel` argument)
      - mel spectrogram (provide `mel_filters`)
      - log-mel spectrogram (provide `mel_filters` and `log_mel`)

    How this works:

      1. The input waveform is split into frames of size `frame_length` that are partially overlapping by `frame_length
         - hop_length` samples.
      2. Each frame is multiplied by the window and placed into a buffer of size `fft_length`.
      3. The DFT is taken of each windowed frame.
      4. The results are stacked into a spectrogram.

    We make a distinction between the following "blocks" of sample data, each of which may have a different lengths:

      - The analysis frame. This is the size of the time slices that the input waveform is split into.
      - The window. Each analysis frame is multiplied by the window to avoid spectral leakage.
      - The FFT input buffer. The length of this determines how many frequency bins are in the spectrogram.

    In this implementation, the window is assumed to be zero-padded to have the same size as the analysis frame. A
    padded window can be obtained from `window_function()`. The FFT input buffer may be larger than the analysis frame,
    typically the next power of two.

    Note: This function is not optimized for speed yet. It should be mostly compatible with `librosa.stft` and
    `torchaudio.functional.transforms.Spectrogram`, although it is more flexible due to the different ways spectrograms
    can be constructed.

    Args:
        waveform (`np.ndarray` of shape `(length,)`):
            The input waveform. This must be a single real-valued, mono waveform.
        window (`np.ndarray` of shape `(frame_length,)`):
            The windowing function to apply, including zero-padding if necessary. The actual window length may be
            shorter than `frame_length`, but we're assuming the array has already been zero-padded.
        frame_length (`int`):
            The length of the analysis frames in samples. With librosa this is always equal to `fft_length` but we also
            allow smaller sizes.
        hop_length (`int`):
            The stride between successive analysis frames in samples.
        fft_length (`int`, *optional*):
            The size of the FFT buffer in samples. This determines how many frequency bins the spectrogram will have.
            For optimal speed, this should be a power of two. If `None`, uses `frame_length`.
        power (`float`, *optional*, defaults to 1.0):
            If 1.0, returns the amplitude spectrogram. If 2.0, returns the power spectrogram. If `None`, returns
            complex numbers.
        center (`bool`, *optional*, defaults to `True`):
            Whether to pad the waveform so that frame `t` is centered around time `t * hop_length`. If `False`, frame
            `t` will start at time `t * hop_length`.
        pad_mode (`str`, *optional*, defaults to `"reflect"`):
            Padding mode used when `center` is `True`. Possible values are: `"constant"` (pad with zeros), `"edge"`
            (pad with edge values), `"reflect"` (pads with mirrored values).
        onesided (`bool`, *optional*, defaults to `True`):
            If True, only computes the positive frequencies and returns a spectrogram containing `fft_length // 2 + 1`
            frequency bins. If False, also computes the negative frequencies and returns `fft_length` frequency bins.
        preemphasis (`float`, *optional*)
            Coefficient for a low-pass filter that applies pre-emphasis before the DFT.
        mel_filters (`np.ndarray` of shape `(num_freq_bins, num_mel_filters)`, *optional*):
            The mel filter bank. If supplied, applies a this filter bank to create a mel spectrogram.
        mel_floor (`float`, *optional*, defaults to 1e-10):
            Minimum value of mel frequency banks.
        log_mel (`str`, *optional*):
            How to convert the spectrogram to log scale. Possible options are: `None` (don't convert), `"log"` (take
            the natural logarithm) `"log10"` (take the base-10 logarithm), `"dB"` (convert to decibels). Can only be
            used when `power` is not `None`.
        reference (`float`, *optional*, defaults to 1.0):
            Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
            the loudest part to 0 dB. Must be greater than zero.
        min_value (`float`, *optional*, defaults to `1e-10`):
            The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
            `log(0)`. For a power spectrogram, the default of `1e-10` corresponds to a minimum of -100 dB. For an
            amplitude spectrogram, the value `1e-5` corresponds to -100 dB. Must be greater than zero.
        db_range (`float`, *optional*):
            Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
            peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
        remove_dc_offset (`bool`, *optional*):
            Subtract mean from waveform on each frame, applied before pre-emphasis. This should be set to `true` in
            order to get the same results as `torchaudio.compliance.kaldi.fbank` when computing mel filters.
        dtype (`np.dtype`, *optional*, defaults to `np.float32`):
            Data type of the spectrogram tensor. If `power` is None, this argument is ignored and the dtype will be
            `np.complex64`.

    Returns:
        `nd.array` containing a spectrogram of shape `(num_frequency_bins, length)` for a regular spectrogram or shape
        `(num_mel_filters, length)` for a mel spectrogram.
    """
    window_length = len(window)

    if fft_length is None:
        fft_length = frame_length

    if frame_length > fft_length:
        raise ValueError(f"frame_length ({frame_length}) may not be larger than fft_length ({fft_length})")

    if window_length != frame_length:
        raise ValueError(f"Length of the window ({window_length}) must equal frame_length ({frame_length})")

    if hop_length <= 0:
        raise ValueError("hop_length must be greater than zero")

    if waveform.ndim != 1:
        raise ValueError(f"Input waveform must have only one dimension, shape is {waveform.shape}")

    if np.iscomplexobj(waveform):
        raise ValueError("Complex-valued input waveforms are not currently supported")

    # center pad the waveform
    if center:
        padding = [(int(frame_length // 2), int(frame_length // 2))]
        waveform = np.pad(waveform, padding, mode=pad_mode)

    # promote to float64, since np.fft uses float64 internally
    waveform = waveform.astype(np.float64)
    window = window.astype(np.float64)

    # split waveform into frames of frame_length size
    num_frames = int(1 + np.floor((waveform.size - frame_length) / hop_length))

    num_frequency_bins = (fft_length // 2) + 1 if onesided else fft_length
    spectrogram = np.empty((num_frames, num_frequency_bins), dtype=np.complex64)

    # rfft is faster than fft
    fft_func = np.fft.rfft if onesided else np.fft.fft
    buffer = np.zeros(fft_length)

    timestep = 0
    for frame_idx in range(num_frames):
        buffer[:frame_length] = waveform[timestep : timestep + frame_length]

        if remove_dc_offset:
            buffer[:frame_length] = buffer[:frame_length] - buffer[:frame_length].mean()

        if preemphasis is not None:
            buffer[1:frame_length] -= preemphasis * buffer[: frame_length - 1]
            buffer[0] *= 1 - preemphasis

        buffer[:frame_length] *= window

        spectrogram[frame_idx] = fft_func(buffer)
        timestep += hop_length

    # note: ** is much faster than np.power
    if power is not None:
        spectrogram = np.abs(spectrogram, dtype=np.float64) ** power

    spectrogram = spectrogram.T

    if mel_filters is not None:
        spectrogram = np.maximum(mel_floor, np.dot(mel_filters.T, spectrogram))

    if power is not None and log_mel is not None:
        if log_mel == "log":
            spectrogram = np.log(spectrogram)
        elif log_mel == "log10":
            spectrogram = np.log10(spectrogram)
        elif log_mel == "dB":
            if power == 1.0:
                spectrogram = amplitude_to_db(spectrogram, reference, min_value, db_range)
            elif power == 2.0:
                spectrogram = power_to_db(spectrogram, reference, min_value, db_range)
            else:
                raise ValueError(f"Cannot use log_mel option '{log_mel}' with power {power}")
        else:
            raise ValueError(f"Unknown log_mel option: {log_mel}")

        spectrogram = np.asarray(spectrogram, dtype)

    return spectrogram


def power_to_db(
    spectrogram: np.ndarray,
    reference: float = 1.0,
    min_value: float = 1e-10,
    db_range: Optional[float] = None,
) -> np.ndarray:
    """
    Converts a power spectrogram to the decibel scale. This computes `10 * log10(spectrogram / reference)`, using basic
    logarithm properties for numerical stability.

    The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a
    linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it.
    This means that large variations in energy may not sound all that different if the sound is loud to begin with.
    This compression operation makes the (mel) spectrogram features match more closely what humans actually hear.

    Based on the implementation of `librosa.power_to_db`.

    Args:
        spectrogram (`np.ndarray`):
            The input power (mel) spectrogram. Note that a power spectrogram has the amplitudes squared!
        reference (`float`, *optional*, defaults to 1.0):
            Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
            the loudest part to 0 dB. Must be greater than zero.
        min_value (`float`, *optional*, defaults to `1e-10`):
            The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
            `log(0)`. The default of `1e-10` corresponds to a minimum of -100 dB. Must be greater than zero.
        db_range (`float`, *optional*):
            Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
            peak value and the smallest value will never be more than 80 dB. Must be greater than zero.

    Returns:
        `np.ndarray`: the spectrogram in decibels
    """
    if reference <= 0.0:
        raise ValueError("reference must be greater than zero")
    if min_value <= 0.0:
        raise ValueError("min_value must be greater than zero")

    reference = max(min_value, reference)

    spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
    spectrogram = 10.0 * (np.log10(spectrogram) - np.log10(reference))

    if db_range is not None:
        if db_range <= 0.0:
            raise ValueError("db_range must be greater than zero")
        spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None)

    return spectrogram


def amplitude_to_db(
    spectrogram: np.ndarray,
    reference: float = 1.0,
    min_value: float = 1e-5,
    db_range: Optional[float] = None,
) -> np.ndarray:
    """
    Converts an amplitude spectrogram to the decibel scale. This computes `20 * log10(spectrogram / reference)`, using
    basic logarithm properties for numerical stability.

    The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a
    linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it.
    This means that large variations in energy may not sound all that different if the sound is loud to begin with.
    This compression operation makes the (mel) spectrogram features match more closely what humans actually hear.

    Args:
        spectrogram (`np.ndarray`):
            The input amplitude (mel) spectrogram.
        reference (`float`, *optional*, defaults to 1.0):
            Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
            the loudest part to 0 dB. Must be greater than zero.
        min_value (`float`, *optional*, defaults to `1e-5`):
            The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
            `log(0)`. The default of `1e-5` corresponds to a minimum of -100 dB. Must be greater than zero.
        db_range (`float`, *optional*):
            Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
            peak value and the smallest value will never be more than 80 dB. Must be greater than zero.

    Returns:
        `np.ndarray`: the spectrogram in decibels
    """
    if reference <= 0.0:
        raise ValueError("reference must be greater than zero")
    if min_value <= 0.0:
        raise ValueError("min_value must be greater than zero")

    reference = max(min_value, reference)

    spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
    spectrogram = 20.0 * (np.log10(spectrogram) - np.log10(reference))

    if db_range is not None:
        if db_range <= 0.0:
            raise ValueError("db_range must be greater than zero")
        spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None)

    return spectrogram


### deprecated functions below this line ###


def get_mel_filter_banks(
    nb_frequency_bins: int,
    nb_mel_filters: int,
    frequency_min: float,
    frequency_max: float,
    sample_rate: int,
    norm: Optional[str] = None,
    mel_scale: str = "htk",
) -> np.array:
    warnings.warn(
        "The function `get_mel_filter_banks` is deprecated and will be removed in version 4.31.0 of Transformers",
        FutureWarning,
    )
    return mel_filter_bank(
        num_frequency_bins=nb_frequency_bins,
        num_mel_filters=nb_mel_filters,
        min_frequency=frequency_min,
        max_frequency=frequency_max,
        sampling_rate=sample_rate,
        norm=norm,
        mel_scale=mel_scale,
    )


def fram_wave(waveform: np.array, hop_length: int = 160, fft_window_size: int = 400, center: bool = True):
    """
    In order to compute the short time fourier transform, the waveform needs to be split in overlapping windowed
    segments called `frames`.

    The window length (window_length) defines how much of the signal is contained in each frame, while the hop length
    defines the step between the beginning of each new frame.


    Args:
        waveform (`np.array` of shape `(sample_length,)`):
            The raw waveform which will be split into smaller chunks.
        hop_length (`int`, *optional*, defaults to 160):
            Step between each window of the waveform.
        fft_window_size (`int`, *optional*, defaults to 400):
            Defines the size of the window.
        center (`bool`, defaults to `True`):
            Whether or not to center each frame around the middle of the frame. Centering is done by reflecting the
            waveform on the left and on the right.

    Return:
        framed_waveform (`np.array` of shape `(waveform.shape // hop_length , fft_window_size)`):
            The framed waveforms that can be fed to `np.fft`.
    """
    warnings.warn(
        "The function `fram_wave` is deprecated and will be removed in version 4.31.0 of Transformers",
        FutureWarning,
    )
    frames = []
    for i in range(0, waveform.shape[0] + 1, hop_length):
        if center:
            half_window = (fft_window_size - 1) // 2 + 1
            start = i - half_window if i > half_window else 0
            end = i + half_window if i < waveform.shape[0] - half_window else waveform.shape[0]
            frame = waveform[start:end]
            if start == 0:
                padd_width = (-i + half_window, 0)
                frame = np.pad(frame, pad_width=padd_width, mode="reflect")

            elif end == waveform.shape[0]:
                padd_width = (0, (i - waveform.shape[0] + half_window))
                frame = np.pad(frame, pad_width=padd_width, mode="reflect")

        else:
            frame = waveform[i : i + fft_window_size]
            frame_width = frame.shape[0]
            if frame_width < waveform.shape[0]:
                frame = np.lib.pad(
                    frame, pad_width=(0, fft_window_size - frame_width), mode="constant", constant_values=0
                )
        frames.append(frame)

    frames = np.stack(frames, 0)
    return frames


def stft(frames: np.array, windowing_function: np.array, fft_window_size: int = None):
    """
    Calculates the complex Short-Time Fourier Transform (STFT) of the given framed signal. Should give the same results
    as `torch.stft`.

    Args:
        frames (`np.array` of dimension `(num_frames, fft_window_size)`):
            A framed audio signal obtained using `audio_utils.fram_wav`.
        windowing_function (`np.array` of dimension `(nb_frequency_bins, nb_mel_filters)`:
            A array reprensenting the function that will be used to reduces the amplitude of the discontinuities at the
            boundaries of each frame when computing the STFT. Each frame will be multiplied by the windowing_function.
            For more information on the discontinuities, called *Spectral leakage*, refer to [this
            tutorial]https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf
        fft_window_size (`int`, *optional*):
            Size of the window om which the Fourier transform is applied. This controls the frequency resolution of the
            spectrogram. 400 means that the fourrier transform is computed on windows of 400 samples. The number of
            frequency bins (`nb_frequency_bins`) used to divide the window into equal strips is equal to
            `(1+fft_window_size)//2`. An increase of the fft_window_size slows the calculus time proportionnally.

    Example:

    ```python
    >>> from transformers.audio_utils import stft, fram_wave
    >>> import numpy as np

    >>> audio = np.random.rand(50)
    >>> fft_window_size = 10
    >>> hop_length = 2
    >>> framed_audio = fram_wave(audio, hop_length, fft_window_size)
    >>> spectrogram = stft(framed_audio, np.hanning(fft_window_size + 1))
    ```

    Returns:
        spectrogram (`np.ndarray`):
            A spectrogram of shape `(num_frames, nb_frequency_bins)` obtained using the STFT algorithm
    """
    warnings.warn(
        "The function `stft` is deprecated and will be removed in version 4.31.0 of Transformers",
        FutureWarning,
    )
    frame_size = frames.shape[1]

    if fft_window_size is None:
        fft_window_size = frame_size

    if fft_window_size < frame_size:
        raise ValueError("FFT size must greater or equal the frame size")
    # number of FFT bins to store
    nb_frequency_bins = (fft_window_size >> 1) + 1

    spectrogram = np.empty((len(frames), nb_frequency_bins), dtype=np.complex64)
    fft_signal = np.zeros(fft_window_size)

    for f, frame in enumerate(frames):
        if windowing_function is not None:
            np.multiply(frame, windowing_function, out=fft_signal[:frame_size])
        else:
            fft_signal[:frame_size] = frame
        spectrogram[f] = np.fft.fft(fft_signal, axis=0)[:nb_frequency_bins]
    return spectrogram.T