File size: 51,744 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities to convert slow tokenizers in their fast tokenizers counterparts.

All the conversions are grouped here to gather SentencePiece dependencies outside of the fast tokenizers files and
allow to make our dependency on SentencePiece optional.
"""

import warnings
from typing import Dict, List, Tuple

from packaging import version
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors
from tokenizers.models import BPE, Unigram, WordPiece

from .utils import is_protobuf_available, requires_backends
from .utils.import_utils import PROTOBUF_IMPORT_ERROR


def import_protobuf(error_message=""):
    if is_protobuf_available():
        import google.protobuf

        if version.parse(google.protobuf.__version__) < version.parse("4.0.0"):
            from transformers.utils import sentencepiece_model_pb2
        else:
            from transformers.utils import sentencepiece_model_pb2_new as sentencepiece_model_pb2
        return sentencepiece_model_pb2
    else:
        raise ImportError(PROTOBUF_IMPORT_ERROR.format(error_message))


class SentencePieceExtractor:
    """
    Extractor implementation for SentencePiece trained models. https://github.com/google/sentencepiece
    """

    def __init__(self, model: str):
        requires_backends(self, "sentencepiece")
        from sentencepiece import SentencePieceProcessor

        self.sp = SentencePieceProcessor()
        self.sp.Load(model)

    def extract(self, vocab_scores=None) -> Tuple[Dict[str, int], List[Tuple]]:
        """
        By default will return vocab and merges with respect to their order, by sending `vocab_scores` we're going to
        order the merges with respect to the piece scores instead.
        """
        sp = self.sp
        vocab = {sp.id_to_piece(index): index for index in range(sp.GetPieceSize())}
        if vocab_scores is not None:
            vocab_scores, reverse = dict(vocab_scores), True
        else:
            vocab_scores, reverse = vocab, False

        # Merges
        merges = []
        for merge, piece_score in vocab_scores.items():
            local = []
            for index in range(1, len(merge)):
                piece_l, piece_r = merge[:index], merge[index:]
                if piece_l in vocab and piece_r in vocab:
                    local.append((piece_l, piece_r, piece_score))
            local = sorted(local, key=lambda x: (vocab[x[0]], vocab[x[1]]))
            merges.extend(local)

        merges = sorted(merges, key=lambda val: val[2], reverse=reverse)
        merges = [(val[0], val[1]) for val in merges]
        return vocab, merges


def check_number_comma(piece: str) -> bool:
    return len(piece) < 2 or piece[-1] != "," or not piece[-2].isdigit()


class Converter:
    def __init__(self, original_tokenizer):
        self.original_tokenizer = original_tokenizer

    def converted(self) -> Tokenizer:
        raise NotImplementedError()


class BertConverter(Converter):
    def converted(self) -> Tokenizer:
        vocab = self.original_tokenizer.vocab
        tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))

        tokenize_chinese_chars = False
        strip_accents = False
        do_lower_case = False
        if hasattr(self.original_tokenizer, "basic_tokenizer"):
            tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
            strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
            do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case

        tokenizer.normalizer = normalizers.BertNormalizer(
            clean_text=True,
            handle_chinese_chars=tokenize_chinese_chars,
            strip_accents=strip_accents,
            lowercase=do_lower_case,
        )
        tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()

        cls = str(self.original_tokenizer.cls_token)
        sep = str(self.original_tokenizer.sep_token)
        cls_token_id = self.original_tokenizer.cls_token_id
        sep_token_id = self.original_tokenizer.sep_token_id

        tokenizer.post_processor = processors.TemplateProcessing(
            single=f"{cls}:0 $A:0 {sep}:0",
            pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
            special_tokens=[
                (cls, cls_token_id),
                (sep, sep_token_id),
            ],
        )
        tokenizer.decoder = decoders.WordPiece(prefix="##")

        return tokenizer


class SplinterConverter(Converter):
    def converted(self) -> Tokenizer:
        vocab = self.original_tokenizer.vocab
        tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))

        tokenize_chinese_chars = False
        strip_accents = False
        do_lower_case = False
        if hasattr(self.original_tokenizer, "basic_tokenizer"):
            tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
            strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
            do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case

        tokenizer.normalizer = normalizers.BertNormalizer(
            clean_text=True,
            handle_chinese_chars=tokenize_chinese_chars,
            strip_accents=strip_accents,
            lowercase=do_lower_case,
        )
        tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()

        cls = str(self.original_tokenizer.cls_token)
        sep = str(self.original_tokenizer.sep_token)
        question = str(self.original_tokenizer.question_token)
        dot = "."
        cls_token_id = self.original_tokenizer.cls_token_id
        sep_token_id = self.original_tokenizer.sep_token_id
        question_token_id = self.original_tokenizer.question_token_id
        dot_token_id = self.original_tokenizer.convert_tokens_to_ids(".")

        if self.original_tokenizer.padding_side == "right":
            pair = f"{cls}:0 $A:0 {question} {dot} {sep}:0 $B:1 {sep}:1"
        else:
            pair = f"{cls}:0 $A:0 {sep}:0 $B:1 {question} {dot} {sep}:1"

        tokenizer.post_processor = processors.TemplateProcessing(
            single=f"{cls}:0 $A:0 {sep}:0",
            pair=pair,
            special_tokens=[
                (cls, cls_token_id),
                (sep, sep_token_id),
                (question, question_token_id),
                (dot, dot_token_id),
            ],
        )
        tokenizer.decoder = decoders.WordPiece(prefix="##")

        return tokenizer


class FunnelConverter(Converter):
    def converted(self) -> Tokenizer:
        vocab = self.original_tokenizer.vocab
        tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))

        tokenize_chinese_chars = False
        strip_accents = False
        do_lower_case = False
        if hasattr(self.original_tokenizer, "basic_tokenizer"):
            tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
            strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
            do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case

        tokenizer.normalizer = normalizers.BertNormalizer(
            clean_text=True,
            handle_chinese_chars=tokenize_chinese_chars,
            strip_accents=strip_accents,
            lowercase=do_lower_case,
        )
        tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()

        cls = str(self.original_tokenizer.cls_token)
        sep = str(self.original_tokenizer.sep_token)
        cls_token_id = self.original_tokenizer.cls_token_id
        sep_token_id = self.original_tokenizer.sep_token_id

        tokenizer.post_processor = processors.TemplateProcessing(
            single=f"{cls}:2 $A:0 {sep}:0",  # token_type_id is 2 for Funnel transformer
            pair=f"{cls}:2 $A:0 {sep}:0 $B:1 {sep}:1",
            special_tokens=[
                (cls, cls_token_id),
                (sep, sep_token_id),
            ],
        )
        tokenizer.decoder = decoders.WordPiece(prefix="##")

        return tokenizer


class MPNetConverter(Converter):
    def converted(self) -> Tokenizer:
        vocab = self.original_tokenizer.vocab
        tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))

        tokenize_chinese_chars = False
        strip_accents = False
        do_lower_case = False
        if hasattr(self.original_tokenizer, "basic_tokenizer"):
            tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
            strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
            do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case

        tokenizer.normalizer = normalizers.BertNormalizer(
            clean_text=True,
            handle_chinese_chars=tokenize_chinese_chars,
            strip_accents=strip_accents,
            lowercase=do_lower_case,
        )
        tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()

        cls = str(self.original_tokenizer.cls_token)
        sep = str(self.original_tokenizer.sep_token)
        cls_token_id = self.original_tokenizer.cls_token_id
        sep_token_id = self.original_tokenizer.sep_token_id

        tokenizer.post_processor = processors.TemplateProcessing(
            single=f"{cls}:0 $A:0 {sep}:0",
            pair=f"{cls}:0 $A:0 {sep}:0 {sep}:0 $B:1 {sep}:1",  # MPNet uses two [SEP] tokens
            special_tokens=[
                (cls, cls_token_id),
                (sep, sep_token_id),
            ],
        )
        tokenizer.decoder = decoders.WordPiece(prefix="##")

        return tokenizer


class OpenAIGPTConverter(Converter):
    def converted(self) -> Tokenizer:
        vocab = self.original_tokenizer.encoder
        merges = list(self.original_tokenizer.bpe_ranks.keys())
        unk_token = self.original_tokenizer.unk_token

        tokenizer = Tokenizer(
            BPE(
                vocab=vocab,
                merges=merges,
                dropout=None,
                unk_token=str(unk_token),
                end_of_word_suffix="</w>",
                fuse_unk=False,
            )
        )

        if tokenizer.token_to_id(str(unk_token)) is not None:
            tokenizer.add_special_tokens([str(unk_token)])

        tokenizer.normalizer = normalizers.BertNormalizer(lowercase=True)
        tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
        tokenizer.decoder = decoders.BPEDecoder(suffix="</w>")

        return tokenizer


class GPT2Converter(Converter):
    def converted(self) -> Tokenizer:
        vocab = self.original_tokenizer.encoder
        merges = list(self.original_tokenizer.bpe_ranks.keys())

        tokenizer = Tokenizer(
            BPE(
                vocab=vocab,
                merges=merges,
                dropout=None,
                continuing_subword_prefix="",
                end_of_word_suffix="",
                fuse_unk=False,
            )
        )

        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=self.original_tokenizer.add_prefix_space)
        tokenizer.decoder = decoders.ByteLevel()
        if self.original_tokenizer.add_bos_token:
            bos = self.original_tokenizer.bos_token
            bos_token_id = self.original_tokenizer.bos_token_id
            tokenizer.post_processor = processors.TemplateProcessing(
                single=f"{bos}:0 $A:0",
                pair=f"{bos}:0 $A:0 $B:1",
                special_tokens=[
                    (bos, bos_token_id),
                ],
            )
        else:
            # XXX trim_offsets=False actually means this post_processor doesn't
            # really do anything.
            tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
        return tokenizer


class HerbertConverter(Converter):
    def converted(self) -> Tokenizer:
        tokenizer_info_str = "#version:"
        token_suffix = "</w>"

        vocab = self.original_tokenizer.encoder
        merges = list(self.original_tokenizer.bpe_ranks.keys())
        if tokenizer_info_str in merges[0][0]:
            merges = merges[1:]

        tokenizer = Tokenizer(
            BPE(
                vocab,
                merges,
                dropout=None,
                unk_token=self.original_tokenizer.unk_token,
                end_of_word_suffix=token_suffix,
            )
        )

        tokenizer.normalizer = normalizers.BertNormalizer(lowercase=False, strip_accents=False)
        tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
        tokenizer.decoder = decoders.BPEDecoder(suffix=token_suffix)
        tokenizer.post_processor = processors.BertProcessing(
            sep=(self.original_tokenizer.sep_token, self.original_tokenizer.sep_token_id),
            cls=(self.original_tokenizer.cls_token, self.original_tokenizer.cls_token_id),
        )

        return tokenizer


class RobertaConverter(Converter):
    def converted(self) -> Tokenizer:
        ot = self.original_tokenizer
        vocab = ot.encoder
        merges = list(ot.bpe_ranks.keys())

        tokenizer = Tokenizer(
            BPE(
                vocab=vocab,
                merges=merges,
                dropout=None,
                continuing_subword_prefix="",
                end_of_word_suffix="",
                fuse_unk=False,
            )
        )

        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
        tokenizer.decoder = decoders.ByteLevel()
        tokenizer.post_processor = processors.RobertaProcessing(
            sep=(ot.sep_token, ot.sep_token_id),
            cls=(ot.cls_token, ot.cls_token_id),
            add_prefix_space=ot.add_prefix_space,
            trim_offsets=True,  # True by default on Roberta (historical)
        )

        return tokenizer


class RoFormerConverter(Converter):
    def converted(self) -> Tokenizer:
        from .models.roformer.tokenization_utils import JiebaPreTokenizer

        vocab = self.original_tokenizer.vocab
        tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))

        strip_accents = False
        do_lower_case = False
        if hasattr(self.original_tokenizer, "basic_tokenizer"):
            strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
            do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case

        tokenizer.normalizer = normalizers.BertNormalizer(
            clean_text=True,
            handle_chinese_chars=False,
            strip_accents=strip_accents,
            lowercase=do_lower_case,
        )
        tokenizer.pre_tokenizer = pre_tokenizers.PreTokenizer.custom(JiebaPreTokenizer(vocab))

        cls = str(self.original_tokenizer.cls_token)
        sep = str(self.original_tokenizer.sep_token)
        cls_token_id = self.original_tokenizer.cls_token_id
        sep_token_id = self.original_tokenizer.sep_token_id

        tokenizer.post_processor = processors.TemplateProcessing(
            single=f"{cls}:0 $A:0 {sep}:0",
            pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
            special_tokens=[
                (cls, cls_token_id),
                (sep, sep_token_id),
            ],
        )
        tokenizer.decoder = decoders.WordPiece(prefix="##")

        return tokenizer


class DebertaConverter(Converter):
    def converted(self) -> Tokenizer:
        ot = self.original_tokenizer
        vocab = ot.encoder
        merges = list(ot.bpe_ranks.keys())

        tokenizer = Tokenizer(
            BPE(
                vocab=vocab,
                merges=merges,
                dropout=None,
                continuing_subword_prefix="",
                end_of_word_suffix="",
                fuse_unk=False,
            )
        )

        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
        tokenizer.decoder = decoders.ByteLevel()
        tokenizer.post_processor = processors.TemplateProcessing(
            single="[CLS]:0 $A:0 [SEP]:0",
            pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
            special_tokens=[
                ("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
                ("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
            ],
        )

        return tokenizer


class SpmConverter(Converter):
    def __init__(self, *args):
        requires_backends(self, "protobuf")

        super().__init__(*args)

        # from .utils import sentencepiece_model_pb2 as model_pb2
        model_pb2 = import_protobuf()

        m = model_pb2.ModelProto()
        with open(self.original_tokenizer.vocab_file, "rb") as f:
            m.ParseFromString(f.read())
        self.proto = m

        if self.proto.trainer_spec.byte_fallback:
            if not getattr(self, "handle_byte_fallback", None):
                warnings.warn(
                    "The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option"
                    " which is not implemented in the fast tokenizers. In practice this means that the fast version of the"
                    " tokenizer can produce unknown tokens whereas the sentencepiece version would have converted these "
                    "unknown tokens into a sequence of byte tokens matching the original piece of text."
                )

    def vocab(self, proto):
        return [(piece.piece, piece.score) for piece in proto.pieces]

    def unk_id(self, proto):
        return proto.trainer_spec.unk_id

    def tokenizer(self, proto):
        model_type = proto.trainer_spec.model_type
        vocab_scores = self.vocab(proto)
        unk_id = self.unk_id(proto)

        if model_type == 1:
            tokenizer = Tokenizer(Unigram(vocab_scores, unk_id))
        elif model_type == 2:
            _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract()
            bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)}
            tokenizer = Tokenizer(
                BPE(
                    bpe_vocab,
                    merges,
                    unk_token=proto.trainer_spec.unk_piece,
                    fuse_unk=True,
                )
            )
        else:
            raise Exception(
                "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
            )

        return tokenizer

    def normalizer(self, proto):
        precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
        if not precompiled_charsmap:
            return normalizers.Sequence([normalizers.Replace(Regex(" {2,}"), " ")])
        else:
            return normalizers.Sequence(
                [normalizers.Precompiled(precompiled_charsmap), normalizers.Replace(Regex(" {2,}"), " ")]
            )

    def pre_tokenizer(self, replacement, add_prefix_space):
        return pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)

    def post_processor(self):
        return None

    def decoder(self, replacement, add_prefix_space):
        return decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)

    def converted(self) -> Tokenizer:
        tokenizer = self.tokenizer(self.proto)

        # Tokenizer assemble
        normalizer = self.normalizer(self.proto)
        if normalizer is not None:
            tokenizer.normalizer = normalizer

        replacement = "▁"
        add_prefix_space = True
        pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space)
        if pre_tokenizer is not None:
            tokenizer.pre_tokenizer = pre_tokenizer

        tokenizer.decoder = self.decoder(replacement, add_prefix_space)
        post_processor = self.post_processor()
        if post_processor:
            tokenizer.post_processor = post_processor

        return tokenizer


class AlbertConverter(SpmConverter):
    def vocab(self, proto):
        return [
            (piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
            for piece in proto.pieces
        ]

    def normalizer(self, proto):
        list_normalizers = [
            normalizers.Replace("``", '"'),
            normalizers.Replace("''", '"'),
        ]
        if not self.original_tokenizer.keep_accents:
            list_normalizers.append(normalizers.NFKD())
            list_normalizers.append(normalizers.StripAccents())
        if self.original_tokenizer.do_lower_case:
            list_normalizers.append(normalizers.Lowercase())

        precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap

        if precompiled_charsmap:
            list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))

        list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))
        return normalizers.Sequence(list_normalizers)

    def post_processor(self):
        return processors.TemplateProcessing(
            single="[CLS]:0 $A:0 [SEP]:0",
            pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
            special_tokens=[
                ("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
                ("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
            ],
        )


class BarthezConverter(SpmConverter):
    def unk_id(self, proto):
        unk_id = 3
        return unk_id

    def post_processor(self):
        return processors.TemplateProcessing(
            single="<s> $A </s>",
            pair="<s> $A </s> </s> $B </s>",
            special_tokens=[
                ("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
                ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
            ],
        )


class CamembertConverter(SpmConverter):
    def vocab(self, proto):
        vocab = [
            ("<s>NOTUSED", 0.0),
            ("<pad>", 0.0),
            ("</s>NOTUSED", 0.0),
            ("<unk>", 0.0),
            ("<unk>NOTUSED", -100),
        ]
        # We down-grade the original SentencePiece by -100 to avoid using it and use our added token instead
        vocab += [(piece.piece, piece.score) for piece in proto.pieces[1:]]
        vocab += [("<mask>", 0.0)]
        return vocab

    def unk_id(self, proto):
        # See vocab unk position
        return 3

    def post_processor(self):
        return processors.TemplateProcessing(
            single="<s> $A </s>",
            pair="<s> $A </s> </s> $B </s>",
            special_tokens=[
                ("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
                ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
            ],
        )


class DebertaV2Converter(SpmConverter):
    def pre_tokenizer(self, replacement, add_prefix_space):
        list_pretokenizers = []
        if self.original_tokenizer.split_by_punct:
            list_pretokenizers.append(pre_tokenizers.Punctuation(behavior="isolated"))
        list_pretokenizers.append(pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space))
        return pre_tokenizers.Sequence(list_pretokenizers)

    def normalizer(self, proto):
        list_normalizers = []
        if self.original_tokenizer.do_lower_case:
            list_normalizers.append(normalizers.Lowercase())
        list_normalizers.append(normalizers.Strip())

        precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
        if precompiled_charsmap:
            list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
        list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))

        return normalizers.Sequence(list_normalizers)

    def post_processor(self):
        return processors.TemplateProcessing(
            single="[CLS]:0 $A:0 [SEP]:0",
            pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
            special_tokens=[
                ("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
                ("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
            ],
        )


class MBartConverter(SpmConverter):
    def vocab(self, proto):
        vocab = [
            ("<s>", 0.0),
            ("<pad>", 0.0),
            ("</s>", 0.0),
            ("<unk>", 0.0),
        ]
        vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
        vocab += [
            ("ar_AR", 0.0),
            ("cs_CZ", 0.0),
            ("de_DE", 0.0),
            ("en_XX", 0.0),
            ("es_XX", 0.0),
            ("et_EE", 0.0),
            ("fi_FI", 0.0),
            ("fr_XX", 0.0),
            ("gu_IN", 0.0),
            ("hi_IN", 0.0),
            ("it_IT", 0.0),
            ("ja_XX", 0.0),
            ("kk_KZ", 0.0),
            ("ko_KR", 0.0),
            ("lt_LT", 0.0),
            ("lv_LV", 0.0),
            ("my_MM", 0.0),
            ("ne_NP", 0.0),
            ("nl_XX", 0.0),
            ("ro_RO", 0.0),
            ("ru_RU", 0.0),
            ("si_LK", 0.0),
            ("tr_TR", 0.0),
            ("vi_VN", 0.0),
            ("zh_CN", 0.0),
        ]
        vocab += [("<mask>", 0.0)]
        return vocab

    def unk_id(self, proto):
        return 3

    def post_processor(self):
        return processors.TemplateProcessing(
            single="$A </s> en_XX",
            pair="$A $B </s> en_XX",
            special_tokens=[
                ("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")),
                ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
            ],
        )


class MBart50Converter(SpmConverter):
    def vocab(self, proto):
        vocab = [
            ("<s>", 0.0),
            ("<pad>", 0.0),
            ("</s>", 0.0),
            ("<unk>", 0.0),
        ]
        vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
        # fmt: off
        vocab += [("ar_AR", 0.0), ("cs_CZ", 0.0), ("de_DE", 0.0), ("en_XX", 0.0), ("es_XX", 0.0), ("et_EE", 0.0), ("fi_FI", 0.0), ("fr_XX", 0.0), ("gu_IN", 0.0), ("hi_IN", 0.0), ("it_IT", 0.0), ("ja_XX", 0.0), ("kk_KZ", 0.0), ("ko_KR", 0.0), ("lt_LT", 0.0), ("lv_LV", 0.0), ("my_MM", 0.0), ("ne_NP", 0.0), ("nl_XX", 0.0), ("ro_RO", 0.0), ("ru_RU", 0.0), ("si_LK", 0.0), ("tr_TR", 0.0), ("vi_VN", 0.0), ("zh_CN", 0.0), ("af_ZA", 0.0), ("az_AZ", 0.0), ("bn_IN", 0.0), ("fa_IR", 0.0), ("he_IL", 0.0), ("hr_HR", 0.0), ("id_ID", 0.0), ("ka_GE", 0.0), ("km_KH", 0.0), ("mk_MK", 0.0), ("ml_IN", 0.0), ("mn_MN", 0.0), ("mr_IN", 0.0), ("pl_PL", 0.0), ("ps_AF", 0.0), ("pt_XX", 0.0), ("sv_SE", 0.0), ("sw_KE", 0.0), ("ta_IN", 0.0), ("te_IN", 0.0), ("th_TH", 0.0), ("tl_XX", 0.0), ("uk_UA", 0.0), ("ur_PK", 0.0), ("xh_ZA", 0.0), ("gl_ES", 0.0), ("sl_SI", 0.0)]
        # fmt: on
        vocab += [("<mask>", 0.0)]
        return vocab

    def unk_id(self, proto):
        return 3

    def post_processor(self):
        return processors.TemplateProcessing(
            single="en_XX $A </s>",
            pair="en_XX $A $B </s>",
            special_tokens=[
                ("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")),
                ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
            ],
        )


class NllbConverter(SpmConverter):
    def vocab(self, proto):
        vocab = [
            ("<s>", 0.0),
            ("<pad>", 0.0),
            ("</s>", 0.0),
            ("<unk>", 0.0),
        ]
        vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
        vocab += [
            # fmt: off
            ('ace_Arab', 0.0), ('ace_Latn', 0.0), ('acm_Arab', 0.0), ('acq_Arab', 0.0), ('aeb_Arab', 0.0), ('afr_Latn', 0.0), ('ajp_Arab', 0.0), ('aka_Latn', 0.0), ('amh_Ethi', 0.0), ('apc_Arab', 0.0), ('arb_Arab', 0.0), ('ars_Arab', 0.0), ('ary_Arab', 0.0), ('arz_Arab', 0.0), ('asm_Beng', 0.0), ('ast_Latn', 0.0), ('awa_Deva', 0.0), ('ayr_Latn', 0.0), ('azb_Arab', 0.0), ('azj_Latn', 0.0), ('bak_Cyrl', 0.0), ('bam_Latn', 0.0), ('ban_Latn', 0.0), ('bel_Cyrl', 0.0), ('bem_Latn', 0.0), ('ben_Beng', 0.0), ('bho_Deva', 0.0), ('bjn_Arab', 0.0), ('bjn_Latn', 0.0), ('bod_Tibt', 0.0), ('bos_Latn', 0.0), ('bug_Latn', 0.0), ('bul_Cyrl', 0.0), ('cat_Latn', 0.0), ('ceb_Latn', 0.0), ('ces_Latn', 0.0), ('cjk_Latn', 0.0), ('ckb_Arab', 0.0), ('crh_Latn', 0.0), ('cym_Latn', 0.0), ('dan_Latn', 0.0), ('deu_Latn', 0.0), ('dik_Latn', 0.0), ('dyu_Latn', 0.0), ('dzo_Tibt', 0.0), ('ell_Grek', 0.0), ('eng_Latn', 0.0), ('epo_Latn', 0.0), ('est_Latn', 0.0), ('eus_Latn', 0.0), ('ewe_Latn', 0.0), ('fao_Latn', 0.0), ('pes_Arab', 0.0), ('fij_Latn', 0.0), ('fin_Latn', 0.0), ('fon_Latn', 0.0), ('fra_Latn', 0.0), ('fur_Latn', 0.0), ('fuv_Latn', 0.0), ('gla_Latn', 0.0), ('gle_Latn', 0.0), ('glg_Latn', 0.0), ('grn_Latn', 0.0), ('guj_Gujr', 0.0), ('hat_Latn', 0.0), ('hau_Latn', 0.0), ('heb_Hebr', 0.0), ('hin_Deva', 0.0), ('hne_Deva', 0.0), ('hrv_Latn', 0.0), ('hun_Latn', 0.0), ('hye_Armn', 0.0), ('ibo_Latn', 0.0), ('ilo_Latn', 0.0), ('ind_Latn', 0.0), ('isl_Latn', 0.0), ('ita_Latn', 0.0), ('jav_Latn', 0.0), ('jpn_Jpan', 0.0), ('kab_Latn', 0.0), ('kac_Latn', 0.0), ('kam_Latn', 0.0), ('kan_Knda', 0.0), ('kas_Arab', 0.0), ('kas_Deva', 0.0), ('kat_Geor', 0.0), ('knc_Arab', 0.0), ('knc_Latn', 0.0), ('kaz_Cyrl', 0.0), ('kbp_Latn', 0.0), ('kea_Latn', 0.0), ('khm_Khmr', 0.0), ('kik_Latn', 0.0), ('kin_Latn', 0.0), ('kir_Cyrl', 0.0), ('kmb_Latn', 0.0), ('kon_Latn', 0.0), ('kor_Hang', 0.0), ('kmr_Latn', 0.0), ('lao_Laoo', 0.0), ('lvs_Latn', 0.0), ('lij_Latn', 0.0), ('lim_Latn', 0.0), ('lin_Latn', 0.0), ('lit_Latn', 0.0), ('lmo_Latn', 0.0), ('ltg_Latn', 0.0), ('ltz_Latn', 0.0), ('lua_Latn', 0.0), ('lug_Latn', 0.0), ('luo_Latn', 0.0), ('lus_Latn', 0.0), ('mag_Deva', 0.0), ('mai_Deva', 0.0), ('mal_Mlym', 0.0), ('mar_Deva', 0.0), ('min_Latn', 0.0), ('mkd_Cyrl', 0.0), ('plt_Latn', 0.0), ('mlt_Latn', 0.0), ('mni_Beng', 0.0), ('khk_Cyrl', 0.0), ('mos_Latn', 0.0), ('mri_Latn', 0.0), ('zsm_Latn', 0.0), ('mya_Mymr', 0.0), ('nld_Latn', 0.0), ('nno_Latn', 0.0), ('nob_Latn', 0.0), ('npi_Deva', 0.0), ('nso_Latn', 0.0), ('nus_Latn', 0.0), ('nya_Latn', 0.0), ('oci_Latn', 0.0), ('gaz_Latn', 0.0), ('ory_Orya', 0.0), ('pag_Latn', 0.0), ('pan_Guru', 0.0), ('pap_Latn', 0.0), ('pol_Latn', 0.0), ('por_Latn', 0.0), ('prs_Arab', 0.0), ('pbt_Arab', 0.0), ('quy_Latn', 0.0), ('ron_Latn', 0.0), ('run_Latn', 0.0), ('rus_Cyrl', 0.0), ('sag_Latn', 0.0), ('san_Deva', 0.0), ('sat_Beng', 0.0), ('scn_Latn', 0.0), ('shn_Mymr', 0.0), ('sin_Sinh', 0.0), ('slk_Latn', 0.0), ('slv_Latn', 0.0), ('smo_Latn', 0.0), ('sna_Latn', 0.0), ('snd_Arab', 0.0), ('som_Latn', 0.0), ('sot_Latn', 0.0), ('spa_Latn', 0.0), ('als_Latn', 0.0), ('srd_Latn', 0.0), ('srp_Cyrl', 0.0), ('ssw_Latn', 0.0), ('sun_Latn', 0.0), ('swe_Latn', 0.0), ('swh_Latn', 0.0), ('szl_Latn', 0.0), ('tam_Taml', 0.0), ('tat_Cyrl', 0.0), ('tel_Telu', 0.0), ('tgk_Cyrl', 0.0), ('tgl_Latn', 0.0), ('tha_Thai', 0.0), ('tir_Ethi', 0.0), ('taq_Latn', 0.0), ('taq_Tfng', 0.0), ('tpi_Latn', 0.0), ('tsn_Latn', 0.0), ('tso_Latn', 0.0), ('tuk_Latn', 0.0), ('tum_Latn', 0.0), ('tur_Latn', 0.0), ('twi_Latn', 0.0), ('tzm_Tfng', 0.0), ('uig_Arab', 0.0), ('ukr_Cyrl', 0.0), ('umb_Latn', 0.0), ('urd_Arab', 0.0), ('uzn_Latn', 0.0), ('vec_Latn', 0.0), ('vie_Latn', 0.0), ('war_Latn', 0.0), ('wol_Latn', 0.0), ('xho_Latn', 0.0), ('ydd_Hebr', 0.0), ('yor_Latn', 0.0), ('yue_Hant', 0.0), ('zho_Hans', 0.0), ('zho_Hant', 0.0), ('zul_Latn', 0.0)
            # fmt: on
        ]
        vocab += [("<mask>", 0.0)]
        return vocab

    def unk_id(self, proto):
        return 3

    def post_processor(self):
        return processors.TemplateProcessing(
            single="eng_Latn $A </s>",
            pair="eng_Latn $A $B </s>",
            special_tokens=[
                ("eng_Latn", self.original_tokenizer.convert_tokens_to_ids("eng_Latn")),
                ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
            ],
        )


class XLMRobertaConverter(SpmConverter):
    def vocab(self, proto):
        vocab = [
            ("<s>", 0.0),
            ("<pad>", 0.0),
            ("</s>", 0.0),
            ("<unk>", 0.0),
        ]
        vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
        vocab += [("<mask>", 0.0)]
        return vocab

    def unk_id(self, proto):
        unk_id = 3
        return unk_id

    def post_processor(self):
        return processors.TemplateProcessing(
            single="<s> $A </s>",
            pair="<s> $A </s> </s> $B </s>",
            special_tokens=[
                ("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
                ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
            ],
        )


class XLNetConverter(SpmConverter):
    def vocab(self, proto):
        return [
            (piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
            for piece in proto.pieces
        ]

    def normalizer(self, proto):
        list_normalizers = [
            normalizers.Replace("``", '"'),
            normalizers.Replace("''", '"'),
        ]
        if not self.original_tokenizer.keep_accents:
            list_normalizers.append(normalizers.NFKD())
            list_normalizers.append(normalizers.StripAccents())
        if self.original_tokenizer.do_lower_case:
            list_normalizers.append(normalizers.Lowercase())

        precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap

        if precompiled_charsmap:
            list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))

        list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))
        return normalizers.Sequence(list_normalizers)

    def post_processor(self):
        return processors.TemplateProcessing(
            single="$A:0 <sep>:0 <cls>:2",
            pair="$A:0 <sep>:0 $B:1 <sep>:1 <cls>:2",
            special_tokens=[
                ("<sep>", self.original_tokenizer.convert_tokens_to_ids("<sep>")),
                ("<cls>", self.original_tokenizer.convert_tokens_to_ids("<cls>")),
            ],
        )


class ReformerConverter(SpmConverter):
    pass


class RemBertConverter(SpmConverter):
    # Inspired from AlbertConverter
    def normalizer(self, proto):
        list_normalizers = [
            normalizers.Replace("``", '"'),
            normalizers.Replace("''", '"'),
            normalizers.Replace(Regex(" {2,}"), " "),
        ]
        if not self.original_tokenizer.keep_accents:
            list_normalizers.append(normalizers.NFKD())
            list_normalizers.append(normalizers.StripAccents())
        if self.original_tokenizer.do_lower_case:
            list_normalizers.append(normalizers.Lowercase())

        precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap

        if precompiled_charsmap:
            list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))

        return normalizers.Sequence(list_normalizers)

    def post_processor(self):
        return processors.TemplateProcessing(
            single="[CLS]:0 $A:0 [SEP]:0",
            pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
            special_tokens=[
                ("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
                ("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
            ],
        )


class BertGenerationConverter(SpmConverter):
    pass


class PegasusConverter(SpmConverter):
    def vocab(self, proto):
        vocab = [
            (self.original_tokenizer.pad_token, 0.0),
            (self.original_tokenizer.eos_token, 0.0),
        ]

        if self.original_tokenizer.mask_token_sent is not None:
            vocab += [(self.original_tokenizer.mask_token_sent, 0.0)]

        if (
            self.original_tokenizer.mask_token is not None
            and self.original_tokenizer.mask_token_id < self.original_tokenizer.offset
        ):
            vocab += [(self.original_tokenizer.mask_token, 0.0)]

        vocab += [(f"<unk_{i}>", -100.0) for i in range(2, self.original_tokenizer.offset)]
        vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]]
        return vocab

    def unk_id(self, proto):
        return proto.trainer_spec.unk_id + self.original_tokenizer.offset

    def pre_tokenizer(self, replacement, add_prefix_space):
        return pre_tokenizers.Sequence(
            [
                pre_tokenizers.WhitespaceSplit(),
                pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space),
            ]
        )

    def post_processor(self):
        eos = self.original_tokenizer.eos_token
        special_tokens = [
            (eos, self.original_tokenizer.eos_token_id),
        ]
        return processors.TemplateProcessing(single=["$A", eos], pair=["$A", "$B", eos], special_tokens=special_tokens)


class T5Converter(SpmConverter):
    def vocab(self, proto):
        num_extra_ids = self.original_tokenizer._extra_ids
        vocab = [(piece.piece, piece.score) for piece in proto.pieces]
        vocab += [(f"<extra_id_{i}>", 0.0) for i in range(num_extra_ids - 1, -1, -1)]
        return vocab

    def post_processor(self):
        return processors.TemplateProcessing(
            single=["$A", "</s>"],
            pair=["$A", "</s>", "$B", "</s>"],
            special_tokens=[
                ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
            ],
        )


class WhisperConverter(Converter):
    def converted(self) -> Tokenizer:
        vocab = self.original_tokenizer.encoder
        merges = list(self.original_tokenizer.bpe_ranks.keys())

        tokenizer = Tokenizer(
            BPE(
                vocab=vocab,
                merges=merges,
                dropout=None,
                continuing_subword_prefix="",
                end_of_word_suffix="",
                fuse_unk=False,
            )
        )

        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=self.original_tokenizer.add_prefix_space)
        tokenizer.decoder = decoders.ByteLevel()

        prefix_token_ids = self.original_tokenizer.prefix_tokens
        prefixes = self.original_tokenizer.convert_ids_to_tokens(prefix_token_ids)
        eos = self.original_tokenizer.eos_token
        eos_token_id = self.original_tokenizer.eos_token_id
        prefix_template = " ".join([f"{token}:0" for token in prefixes])
        tokenizer.post_processor = processors.TemplateProcessing(
            single=f"{prefix_template} $A:0 {eos}:0",
            pair=f"{prefix_template} $A:0 $B:1 {eos}:1",
            special_tokens=[
                (eos, eos_token_id),
                *zip(prefixes, prefix_token_ids),
            ],
        )

        return tokenizer


class BigBirdConverter(SpmConverter):
    def post_processor(self):
        return processors.TemplateProcessing(
            single="[CLS]:0 $A:0 [SEP]:0",
            pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
            special_tokens=[
                ("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
                ("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
            ],
        )


class CLIPConverter(Converter):
    def converted(self) -> Tokenizer:
        vocab = self.original_tokenizer.encoder
        merges = list(self.original_tokenizer.bpe_ranks.keys())
        unk_token = self.original_tokenizer.unk_token

        tokenizer = Tokenizer(
            BPE(
                vocab=vocab,
                merges=merges,
                dropout=None,
                continuing_subword_prefix="",
                end_of_word_suffix="</w>",
                fuse_unk=False,
                unk_token=str(unk_token),
            )
        )

        tokenizer.normalizer = normalizers.Sequence(
            [normalizers.NFC(), normalizers.Replace(Regex(r"\s+"), " "), normalizers.Lowercase()]
        )
        tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
            [
                pre_tokenizers.Split(
                    Regex(r"""'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+"""),
                    behavior="removed",
                    invert=True,
                ),
                pre_tokenizers.ByteLevel(add_prefix_space=False),
            ]
        )
        tokenizer.decoder = decoders.ByteLevel()

        # Hack to have a ByteLevel and TemplaceProcessor
        tokenizer.post_processor = processors.RobertaProcessing(
            sep=(self.original_tokenizer.eos_token, self.original_tokenizer.eos_token_id),
            cls=(self.original_tokenizer.bos_token, self.original_tokenizer.bos_token_id),
            add_prefix_space=False,
            trim_offsets=False,
        )
        return tokenizer


class LayoutLMv2Converter(Converter):
    def converted(self) -> Tokenizer:
        vocab = self.original_tokenizer.vocab
        tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))

        tokenize_chinese_chars = False
        strip_accents = False
        do_lower_case = True
        if hasattr(self.original_tokenizer, "basic_tokenizer"):
            tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
            strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
            do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case

        tokenizer.normalizer = normalizers.BertNormalizer(
            clean_text=True,
            handle_chinese_chars=tokenize_chinese_chars,
            strip_accents=strip_accents,
            lowercase=do_lower_case,
        )
        tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()

        cls = str(self.original_tokenizer.cls_token)
        sep = str(self.original_tokenizer.sep_token)
        cls_token_id = self.original_tokenizer.cls_token_id
        sep_token_id = self.original_tokenizer.sep_token_id

        tokenizer.post_processor = processors.TemplateProcessing(
            single=f"{cls}:0 $A:0 {sep}:0",
            pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
            special_tokens=[
                (cls, cls_token_id),
                (sep, sep_token_id),
            ],
        )
        tokenizer.decoder = decoders.WordPiece(prefix="##")

        return tokenizer


class BlenderbotConverter(Converter):
    def converted(self) -> Tokenizer:
        ot = self.original_tokenizer
        vocab = ot.encoder
        merges = list(ot.bpe_ranks.keys())

        tokenizer = Tokenizer(
            BPE(
                vocab=vocab,
                merges=merges,
                dropout=None,
                continuing_subword_prefix="",
                end_of_word_suffix="",
                fuse_unk=False,
            )
        )

        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
        tokenizer.decoder = decoders.ByteLevel()
        tokenizer.post_processor = processors.TemplateProcessing(
            single=f"$A:0 {ot.eos_token}:0",
            special_tokens=[
                (ot.eos_token, ot.eos_token_id),
            ],
        )

        return tokenizer


class XGLMConverter(SpmConverter):
    def vocab(self, proto):
        vocab = [
            ("<s>", 0.0),
            ("<pad>", 0.0),
            ("</s>", 0.0),
            ("<unk>", 0.0),
        ]
        vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
        # fmt: off
        vocab += [("<madeupword0>", 0.0), ("<madeupword1>", 0.0), ("<madeupword2>", 0.0), ("<madeupword3>", 0.0), ("<madeupword4>", 0.0), ("<madeupword5>", 0.0), ("<madeupword6>", 0.0)]
        # fmt: on
        return vocab

    def unk_id(self, proto):
        unk_id = 3
        return unk_id

    def post_processor(self):
        return processors.TemplateProcessing(
            single="</s> $A",
            pair="</s> $A </s> </s> $B",
            special_tokens=[
                ("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
                ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
            ],
        )


class LlamaConverter(SpmConverter):
    handle_byte_fallback = True

    def vocab(self, proto):
        vocab = [
            ("<unk>", 0.0),
            ("<s>", 0.0),
            ("</s>", 0.0),
        ]
        vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
        return vocab

    def unk_id(self, proto):
        unk_id = 0
        return unk_id

    def decoder(self, replacement, add_prefix_space):
        return decoders.Sequence(
            [
                decoders.Replace("▁", " "),
                decoders.ByteFallback(),
                decoders.Fuse(),
                decoders.Strip(content=" ", left=1),
            ]
        )

    def tokenizer(self, proto):
        model_type = proto.trainer_spec.model_type
        vocab_scores = self.vocab(proto)
        if model_type == 1:
            import tokenizers

            if version.parse(tokenizers.__version__) < version.parse("0.14.0"):
                tokenizer = Tokenizer(Unigram(vocab_scores, 0))
            else:
                tokenizer = Tokenizer(Unigram(vocab_scores, 0, byte_fallback=True))

        elif model_type == 2:
            _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
            bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
            tokenizer = Tokenizer(
                BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
            )
            tokenizer.add_special_tokens(
                [
                    AddedToken("<unk>"),
                    AddedToken("<s>"),
                    AddedToken("</s>"),
                ]
            )
        else:
            raise Exception(
                "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
            )

        return tokenizer

    def normalizer(self, proto):
        return normalizers.Sequence(
            [
                normalizers.Prepend(prepend="▁"),
                normalizers.Replace(pattern=" ", content="▁"),
            ]
        )

    def pre_tokenizer(self, replacement, add_prefix_space):
        return None

    def post_processor(self):
        # the processor is defined in the LlamaTokenizerFast class.
        return None


class MarkupLMConverter(Converter):
    def converted(self) -> Tokenizer:
        ot = self.original_tokenizer
        vocab = ot.encoder
        merges = list(ot.bpe_ranks.keys())

        tokenizer = Tokenizer(
            BPE(
                vocab=vocab,
                merges=merges,
                dropout=None,
                continuing_subword_prefix="",
                end_of_word_suffix="",
                fuse_unk=False,
                unk_token=self.original_tokenizer.unk_token,
            )
        )

        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
        tokenizer.decoder = decoders.ByteLevel()

        cls = str(self.original_tokenizer.cls_token)
        sep = str(self.original_tokenizer.sep_token)
        cls_token_id = self.original_tokenizer.cls_token_id
        sep_token_id = self.original_tokenizer.sep_token_id

        tokenizer.post_processor = processors.TemplateProcessing(
            single=f"{cls} $A {sep}",
            pair=f"{cls} $A {sep} $B {sep}",
            special_tokens=[
                (cls, cls_token_id),
                (sep, sep_token_id),
            ],
        )

        return tokenizer


SLOW_TO_FAST_CONVERTERS = {
    "AlbertTokenizer": AlbertConverter,
    "BartTokenizer": RobertaConverter,
    "BarthezTokenizer": BarthezConverter,
    "BertTokenizer": BertConverter,
    "BigBirdTokenizer": BigBirdConverter,
    "BlenderbotTokenizer": BlenderbotConverter,
    "CamembertTokenizer": CamembertConverter,
    "CLIPTokenizer": CLIPConverter,
    "CodeGenTokenizer": GPT2Converter,
    "ConvBertTokenizer": BertConverter,
    "DebertaTokenizer": DebertaConverter,
    "DebertaV2Tokenizer": DebertaV2Converter,
    "DistilBertTokenizer": BertConverter,
    "DPRReaderTokenizer": BertConverter,
    "DPRQuestionEncoderTokenizer": BertConverter,
    "DPRContextEncoderTokenizer": BertConverter,
    "ElectraTokenizer": BertConverter,
    "FNetTokenizer": AlbertConverter,
    "FunnelTokenizer": FunnelConverter,
    "GPT2Tokenizer": GPT2Converter,
    "HerbertTokenizer": HerbertConverter,
    "LayoutLMTokenizer": BertConverter,
    "LayoutLMv2Tokenizer": BertConverter,
    "LayoutLMv3Tokenizer": RobertaConverter,
    "LayoutXLMTokenizer": XLMRobertaConverter,
    "LongformerTokenizer": RobertaConverter,
    "LEDTokenizer": RobertaConverter,
    "LxmertTokenizer": BertConverter,
    "MarkupLMTokenizer": MarkupLMConverter,
    "MBartTokenizer": MBartConverter,
    "MBart50Tokenizer": MBart50Converter,
    "MPNetTokenizer": MPNetConverter,
    "MobileBertTokenizer": BertConverter,
    "MvpTokenizer": RobertaConverter,
    "NllbTokenizer": NllbConverter,
    "OpenAIGPTTokenizer": OpenAIGPTConverter,
    "PegasusTokenizer": PegasusConverter,
    "RealmTokenizer": BertConverter,
    "ReformerTokenizer": ReformerConverter,
    "RemBertTokenizer": RemBertConverter,
    "RetriBertTokenizer": BertConverter,
    "RobertaTokenizer": RobertaConverter,
    "RoFormerTokenizer": RoFormerConverter,
    "SqueezeBertTokenizer": BertConverter,
    "T5Tokenizer": T5Converter,
    "WhisperTokenizer": WhisperConverter,
    "XLMRobertaTokenizer": XLMRobertaConverter,
    "XLNetTokenizer": XLNetConverter,
    "SplinterTokenizer": SplinterConverter,
    "XGLMTokenizer": XGLMConverter,
    "LlamaTokenizer": LlamaConverter,
    "CodeLlamaTokenizer": LlamaConverter,
}


def convert_slow_tokenizer(transformer_tokenizer) -> Tokenizer:
    """
    Utilities to convert a slow tokenizer instance in a fast tokenizer instance.

    Args:
        transformer_tokenizer ([`~tokenization_utils_base.PreTrainedTokenizer`]):
            Instance of a slow tokenizer to convert in the backend tokenizer for
            [`~tokenization_utils_base.PreTrainedTokenizerFast`].

    Return:
        A instance of [`~tokenizers.Tokenizer`] to be used as the backend tokenizer of a
        [`~tokenization_utils_base.PreTrainedTokenizerFast`]
    """

    tokenizer_class_name = transformer_tokenizer.__class__.__name__

    if tokenizer_class_name not in SLOW_TO_FAST_CONVERTERS:
        raise ValueError(
            f"An instance of tokenizer class {tokenizer_class_name} cannot be converted in a Fast tokenizer instance."
            " No converter was found. Currently available slow->fast convertors:"
            f" {list(SLOW_TO_FAST_CONVERTERS.keys())}"
        )

    converter_class = SLOW_TO_FAST_CONVERTERS[tokenizer_class_name]

    return converter_class(transformer_tokenizer).converted()