File size: 27,376 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities to dynamically load objects from the Hub."""
import filecmp
import importlib
import os
import re
import shutil
import signal
import sys
import typing
import warnings
from pathlib import Path
from typing import Any, Dict, List, Optional, Union

from .utils import (
    HF_MODULES_CACHE,
    TRANSFORMERS_DYNAMIC_MODULE_NAME,
    cached_file,
    extract_commit_hash,
    is_offline_mode,
    logging,
    try_to_load_from_cache,
)


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def init_hf_modules():
    """
    Creates the cache directory for modules with an init, and adds it to the Python path.
    """
    # This function has already been executed if HF_MODULES_CACHE already is in the Python path.
    if HF_MODULES_CACHE in sys.path:
        return

    sys.path.append(HF_MODULES_CACHE)
    os.makedirs(HF_MODULES_CACHE, exist_ok=True)
    init_path = Path(HF_MODULES_CACHE) / "__init__.py"
    if not init_path.exists():
        init_path.touch()
        importlib.invalidate_caches()


def create_dynamic_module(name: Union[str, os.PathLike]):
    """
    Creates a dynamic module in the cache directory for modules.

    Args:
        name (`str` or `os.PathLike`):
            The name of the dynamic module to create.
    """
    init_hf_modules()
    dynamic_module_path = (Path(HF_MODULES_CACHE) / name).resolve()
    # If the parent module does not exist yet, recursively create it.
    if not dynamic_module_path.parent.exists():
        create_dynamic_module(dynamic_module_path.parent)
    os.makedirs(dynamic_module_path, exist_ok=True)
    init_path = dynamic_module_path / "__init__.py"
    if not init_path.exists():
        init_path.touch()
        # It is extremely important to invalidate the cache when we change stuff in those modules, or users end up
        # with errors about module that do not exist. Same for all other `invalidate_caches` in this file.
        importlib.invalidate_caches()


def get_relative_imports(module_file: Union[str, os.PathLike]) -> List[str]:
    """
    Get the list of modules that are relatively imported in a module file.

    Args:
        module_file (`str` or `os.PathLike`): The module file to inspect.

    Returns:
        `List[str]`: The list of relative imports in the module.
    """
    with open(module_file, "r", encoding="utf-8") as f:
        content = f.read()

    # Imports of the form `import .xxx`
    relative_imports = re.findall(r"^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
    # Imports of the form `from .xxx import yyy`
    relative_imports += re.findall(r"^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
    # Unique-ify
    return list(set(relative_imports))


def get_relative_import_files(module_file: Union[str, os.PathLike]) -> List[str]:
    """
    Get the list of all files that are needed for a given module. Note that this function recurses through the relative
    imports (if a imports b and b imports c, it will return module files for b and c).

    Args:
        module_file (`str` or `os.PathLike`): The module file to inspect.

    Returns:
        `List[str]`: The list of all relative imports a given module needs (recursively), which will give us the list
        of module files a given module needs.
    """
    no_change = False
    files_to_check = [module_file]
    all_relative_imports = []

    # Let's recurse through all relative imports
    while not no_change:
        new_imports = []
        for f in files_to_check:
            new_imports.extend(get_relative_imports(f))

        module_path = Path(module_file).parent
        new_import_files = [str(module_path / m) for m in new_imports]
        new_import_files = [f for f in new_import_files if f not in all_relative_imports]
        files_to_check = [f"{f}.py" for f in new_import_files]

        no_change = len(new_import_files) == 0
        all_relative_imports.extend(files_to_check)

    return all_relative_imports


def get_imports(filename: Union[str, os.PathLike]) -> List[str]:
    """
    Extracts all the libraries (not relative imports this time) that are imported in a file.

    Args:
        filename (`str` or `os.PathLike`): The module file to inspect.

    Returns:
        `List[str]`: The list of all packages required to use the input module.
    """
    with open(filename, "r", encoding="utf-8") as f:
        content = f.read()

    # filter out try/except block so in custom code we can have try/except imports
    content = re.sub(r"\s*try\s*:\s*.*?\s*except\s*.*?:", "", content, flags=re.MULTILINE | re.DOTALL)

    # Imports of the form `import xxx`
    imports = re.findall(r"^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
    # Imports of the form `from xxx import yyy`
    imports += re.findall(r"^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
    # Only keep the top-level module
    imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]
    return list(set(imports))


def check_imports(filename: Union[str, os.PathLike]) -> List[str]:
    """
    Check if the current Python environment contains all the libraries that are imported in a file. Will raise if a
    library is missing.

    Args:
        filename (`str` or `os.PathLike`): The module file to check.

    Returns:
        `List[str]`: The list of relative imports in the file.
    """
    imports = get_imports(filename)
    missing_packages = []
    for imp in imports:
        try:
            importlib.import_module(imp)
        except ImportError:
            missing_packages.append(imp)

    if len(missing_packages) > 0:
        raise ImportError(
            "This modeling file requires the following packages that were not found in your environment: "
            f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`"
        )

    return get_relative_imports(filename)


def get_class_in_module(class_name: str, module_path: Union[str, os.PathLike]) -> typing.Type:
    """
    Import a module on the cache directory for modules and extract a class from it.

    Args:
        class_name (`str`): The name of the class to import.
        module_path (`str` or `os.PathLike`): The path to the module to import.

    Returns:
        `typing.Type`: The class looked for.
    """
    module_path = module_path.replace(os.path.sep, ".")
    module = importlib.import_module(module_path)
    return getattr(module, class_name)


def get_cached_module_file(
    pretrained_model_name_or_path: Union[str, os.PathLike],
    module_file: str,
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
    repo_type: Optional[str] = None,
    _commit_hash: Optional[str] = None,
    **deprecated_kwargs,
) -> str:
    """
    Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached
    Transformers module.

    Args:
        pretrained_model_name_or_path (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.

        module_file (`str`):
            The name of the module file containing the class to look for.
        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
        resume_download (`bool`, *optional*, defaults to `False`):
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
        token (`str` or *bool*, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `huggingface-cli login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.
        repo_type (`str`, *optional*):
            Specify the repo type (useful when downloading from a space for instance).

    <Tip>

    Passing `token=True` is required when you want to use a private model.

    </Tip>

    Returns:
        `str`: The path to the module inside the cache.
    """
    use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
    if use_auth_token is not None:
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
        )
        if token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        token = use_auth_token

    if is_offline_mode() and not local_files_only:
        logger.info("Offline mode: forcing local_files_only=True")
        local_files_only = True

    # Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
    pretrained_model_name_or_path = str(pretrained_model_name_or_path)
    is_local = os.path.isdir(pretrained_model_name_or_path)
    if is_local:
        submodule = os.path.basename(pretrained_model_name_or_path)
    else:
        submodule = pretrained_model_name_or_path.replace("/", os.path.sep)
        cached_module = try_to_load_from_cache(
            pretrained_model_name_or_path, module_file, cache_dir=cache_dir, revision=_commit_hash, repo_type=repo_type
        )

    new_files = []
    try:
        # Load from URL or cache if already cached
        resolved_module_file = cached_file(
            pretrained_model_name_or_path,
            module_file,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            resume_download=resume_download,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            repo_type=repo_type,
            _commit_hash=_commit_hash,
        )
        if not is_local and cached_module != resolved_module_file:
            new_files.append(module_file)

    except EnvironmentError:
        logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
        raise

    # Check we have all the requirements in our environment
    modules_needed = check_imports(resolved_module_file)

    # Now we move the module inside our cached dynamic modules.
    full_submodule = TRANSFORMERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
    create_dynamic_module(full_submodule)
    submodule_path = Path(HF_MODULES_CACHE) / full_submodule
    if submodule == os.path.basename(pretrained_model_name_or_path):
        # We copy local files to avoid putting too many folders in sys.path. This copy is done when the file is new or
        # has changed since last copy.
        if not (submodule_path / module_file).exists() or not filecmp.cmp(
            resolved_module_file, str(submodule_path / module_file)
        ):
            shutil.copy(resolved_module_file, submodule_path / module_file)
            importlib.invalidate_caches()
        for module_needed in modules_needed:
            module_needed = f"{module_needed}.py"
            module_needed_file = os.path.join(pretrained_model_name_or_path, module_needed)
            if not (submodule_path / module_needed).exists() or not filecmp.cmp(
                module_needed_file, str(submodule_path / module_needed)
            ):
                shutil.copy(module_needed_file, submodule_path / module_needed)
                importlib.invalidate_caches()
    else:
        # Get the commit hash
        commit_hash = extract_commit_hash(resolved_module_file, _commit_hash)

        # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
        # benefit of versioning.
        submodule_path = submodule_path / commit_hash
        full_submodule = full_submodule + os.path.sep + commit_hash
        create_dynamic_module(full_submodule)

        if not (submodule_path / module_file).exists():
            shutil.copy(resolved_module_file, submodule_path / module_file)
            importlib.invalidate_caches()
        # Make sure we also have every file with relative
        for module_needed in modules_needed:
            if not (submodule_path / f"{module_needed}.py").exists():
                get_cached_module_file(
                    pretrained_model_name_or_path,
                    f"{module_needed}.py",
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    token=token,
                    revision=revision,
                    local_files_only=local_files_only,
                    _commit_hash=commit_hash,
                )
                new_files.append(f"{module_needed}.py")

    if len(new_files) > 0 and revision is None:
        new_files = "\n".join([f"- {f}" for f in new_files])
        repo_type_str = "" if repo_type is None else f"{repo_type}s/"
        url = f"https://huggingface.co/{repo_type_str}{pretrained_model_name_or_path}"
        logger.warning(
            f"A new version of the following files was downloaded from {url}:\n{new_files}"
            "\n. Make sure to double-check they do not contain any added malicious code. To avoid downloading new "
            "versions of the code file, you can pin a revision."
        )

    return os.path.join(full_submodule, module_file)


def get_class_from_dynamic_module(
    class_reference: str,
    pretrained_model_name_or_path: Union[str, os.PathLike],
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
    repo_type: Optional[str] = None,
    code_revision: Optional[str] = None,
    **kwargs,
) -> typing.Type:
    """
    Extracts a class from a module file, present in the local folder or repository of a model.

    <Tip warning={true}>

    Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should
    therefore only be called on trusted repos.

    </Tip>

    Args:
        class_reference (`str`):
            The full name of the class to load, including its module and optionally its repo.
        pretrained_model_name_or_path (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.

            This is used when `class_reference` does not specify another repo.
        module_file (`str`):
            The name of the module file containing the class to look for.
        class_name (`str`):
            The name of the class to import in the module.
        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
        resume_download (`bool`, *optional*, defaults to `False`):
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
        token (`str` or `bool`, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `huggingface-cli login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.
        repo_type (`str`, *optional*):
            Specify the repo type (useful when downloading from a space for instance).
        code_revision (`str`, *optional*, defaults to `"main"`):
            The specific revision to use for the code on the Hub, if the code leaves in a different repository than the
            rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for
            storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git.

    <Tip>

    Passing `token=True` is required when you want to use a private model.

    </Tip>

    Returns:
        `typing.Type`: The class, dynamically imported from the module.

    Examples:

    ```python
    # Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
    # module.
    cls = get_class_from_dynamic_module("modeling.MyBertModel", "sgugger/my-bert-model")

    # Download module `modeling.py` from a given repo and cache then extract the class `MyBertModel` from this
    # module.
    cls = get_class_from_dynamic_module("sgugger/my-bert-model--modeling.MyBertModel", "sgugger/another-bert-model")
    ```"""
    use_auth_token = kwargs.pop("use_auth_token", None)
    if use_auth_token is not None:
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
        )
        if token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        token = use_auth_token

    # Catch the name of the repo if it's specified in `class_reference`
    if "--" in class_reference:
        repo_id, class_reference = class_reference.split("--")
    else:
        repo_id = pretrained_model_name_or_path
    module_file, class_name = class_reference.split(".")

    if code_revision is None and pretrained_model_name_or_path == repo_id:
        code_revision = revision
    # And lastly we get the class inside our newly created module
    final_module = get_cached_module_file(
        repo_id,
        module_file + ".py",
        cache_dir=cache_dir,
        force_download=force_download,
        resume_download=resume_download,
        proxies=proxies,
        token=token,
        revision=code_revision,
        local_files_only=local_files_only,
        repo_type=repo_type,
    )
    return get_class_in_module(class_name, final_module.replace(".py", ""))


def custom_object_save(obj: Any, folder: Union[str, os.PathLike], config: Optional[Dict] = None) -> List[str]:
    """
    Save the modeling files corresponding to a custom model/configuration/tokenizer etc. in a given folder. Optionally
    adds the proper fields in a config.

    Args:
        obj (`Any`): The object for which to save the module files.
        folder (`str` or `os.PathLike`): The folder where to save.
        config (`PretrainedConfig` or dictionary, `optional`):
            A config in which to register the auto_map corresponding to this custom object.

    Returns:
        `List[str]`: The list of files saved.
    """
    if obj.__module__ == "__main__":
        logger.warning(
            f"We can't save the code defining {obj} in {folder} as it's been defined in __main__. You should put "
            "this code in a separate module so we can include it in the saved folder and make it easier to share via "
            "the Hub."
        )
        return

    def _set_auto_map_in_config(_config):
        module_name = obj.__class__.__module__
        last_module = module_name.split(".")[-1]
        full_name = f"{last_module}.{obj.__class__.__name__}"
        # Special handling for tokenizers
        if "Tokenizer" in full_name:
            slow_tokenizer_class = None
            fast_tokenizer_class = None
            if obj.__class__.__name__.endswith("Fast"):
                # Fast tokenizer: we have the fast tokenizer class and we may have the slow one has an attribute.
                fast_tokenizer_class = f"{last_module}.{obj.__class__.__name__}"
                if getattr(obj, "slow_tokenizer_class", None) is not None:
                    slow_tokenizer = getattr(obj, "slow_tokenizer_class")
                    slow_tok_module_name = slow_tokenizer.__module__
                    last_slow_tok_module = slow_tok_module_name.split(".")[-1]
                    slow_tokenizer_class = f"{last_slow_tok_module}.{slow_tokenizer.__name__}"
            else:
                # Slow tokenizer: no way to have the fast class
                slow_tokenizer_class = f"{last_module}.{obj.__class__.__name__}"

            full_name = (slow_tokenizer_class, fast_tokenizer_class)

        if isinstance(_config, dict):
            auto_map = _config.get("auto_map", {})
            auto_map[obj._auto_class] = full_name
            _config["auto_map"] = auto_map
        elif getattr(_config, "auto_map", None) is not None:
            _config.auto_map[obj._auto_class] = full_name
        else:
            _config.auto_map = {obj._auto_class: full_name}

    # Add object class to the config auto_map
    if isinstance(config, (list, tuple)):
        for cfg in config:
            _set_auto_map_in_config(cfg)
    elif config is not None:
        _set_auto_map_in_config(config)

    result = []
    # Copy module file to the output folder.
    object_file = sys.modules[obj.__module__].__file__
    dest_file = Path(folder) / (Path(object_file).name)
    shutil.copy(object_file, dest_file)
    result.append(dest_file)

    # Gather all relative imports recursively and make sure they are copied as well.
    for needed_file in get_relative_import_files(object_file):
        dest_file = Path(folder) / (Path(needed_file).name)
        shutil.copy(needed_file, dest_file)
        result.append(dest_file)

    return result


def _raise_timeout_error(signum, frame):
    raise ValueError(
        "Loading this model requires you to execute custom code contained in the model repository on your local"
        "machine. Please set the option `trust_remote_code=True` to permit loading of this model."
    )


TIME_OUT_REMOTE_CODE = 15


def resolve_trust_remote_code(trust_remote_code, model_name, has_local_code, has_remote_code):
    if trust_remote_code is None:
        if has_local_code:
            trust_remote_code = False
        elif has_remote_code and TIME_OUT_REMOTE_CODE > 0:
            try:
                signal.signal(signal.SIGALRM, _raise_timeout_error)
                signal.alarm(TIME_OUT_REMOTE_CODE)
                while trust_remote_code is None:
                    answer = input(
                        f"The repository for {model_name} contains custom code which must be executed to correctly"
                        f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
                        f"You can avoid this prompt in future by passing the argument `trust_remote_code=True`.\n\n"
                        f"Do you wish to run the custom code? [y/N] "
                    )
                    if answer.lower() in ["yes", "y", "1"]:
                        trust_remote_code = True
                    elif answer.lower() in ["no", "n", "0", ""]:
                        trust_remote_code = False
                signal.alarm(0)
            except Exception:
                # OS which does not support signal.SIGALRM
                raise ValueError(
                    f"The repository for {model_name} contains custom code which must be executed to correctly"
                    f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )
        elif has_remote_code:
            # For the CI which puts the timeout at 0
            _raise_timeout_error(None, None)

    if has_remote_code and not has_local_code and not trust_remote_code:
        raise ValueError(
            f"Loading {model_name} requires you to execute the configuration file in that"
            " repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
            " set the option `trust_remote_code=True` to remove this error."
        )

    return trust_remote_code