File size: 4,161 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .integrations import (
    is_optuna_available,
    is_ray_available,
    is_sigopt_available,
    is_wandb_available,
    run_hp_search_optuna,
    run_hp_search_ray,
    run_hp_search_sigopt,
    run_hp_search_wandb,
)
from .trainer_utils import (
    HPSearchBackend,
    default_hp_space_optuna,
    default_hp_space_ray,
    default_hp_space_sigopt,
    default_hp_space_wandb,
)
from .utils import logging


logger = logging.get_logger(__name__)


class HyperParamSearchBackendBase:
    name: str
    pip_package: str = None

    @staticmethod
    def is_available():
        raise NotImplementedError

    def run(self, trainer, n_trials: int, direction: str, **kwargs):
        raise NotImplementedError

    def default_hp_space(self, trial):
        raise NotImplementedError

    def ensure_available(self):
        if not self.is_available():
            raise RuntimeError(
                f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}."
            )

    @classmethod
    def pip_install(cls):
        return f"`pip install {cls.pip_package or cls.name}`"


class OptunaBackend(HyperParamSearchBackendBase):
    name = "optuna"

    @staticmethod
    def is_available():
        return is_optuna_available()

    def run(self, trainer, n_trials: int, direction: str, **kwargs):
        return run_hp_search_optuna(trainer, n_trials, direction, **kwargs)

    def default_hp_space(self, trial):
        return default_hp_space_optuna(trial)


class RayTuneBackend(HyperParamSearchBackendBase):
    name = "ray"
    pip_package = "'ray[tune]'"

    @staticmethod
    def is_available():
        return is_ray_available()

    def run(self, trainer, n_trials: int, direction: str, **kwargs):
        return run_hp_search_ray(trainer, n_trials, direction, **kwargs)

    def default_hp_space(self, trial):
        return default_hp_space_ray(trial)


class SigOptBackend(HyperParamSearchBackendBase):
    name = "sigopt"

    @staticmethod
    def is_available():
        return is_sigopt_available()

    def run(self, trainer, n_trials: int, direction: str, **kwargs):
        return run_hp_search_sigopt(trainer, n_trials, direction, **kwargs)

    def default_hp_space(self, trial):
        return default_hp_space_sigopt(trial)


class WandbBackend(HyperParamSearchBackendBase):
    name = "wandb"

    @staticmethod
    def is_available():
        return is_wandb_available()

    def run(self, trainer, n_trials: int, direction: str, **kwargs):
        return run_hp_search_wandb(trainer, n_trials, direction, **kwargs)

    def default_hp_space(self, trial):
        return default_hp_space_wandb(trial)


ALL_HYPERPARAMETER_SEARCH_BACKENDS = {
    HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}


def default_hp_search_backend() -> str:
    available_backends = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
    if len(available_backends) > 0:
        name = available_backends[0].name
        if len(available_backends) > 1:
            logger.info(
                f"{len(available_backends)} hyperparameter search backends available. Using {name} as the default."
            )
        return name
    raise RuntimeError(
        "No hyperparameter search backend available.\n"
        + "\n".join(
            f" - To install {backend.name} run {backend.pip_install()}"
            for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()
        )
    )