File size: 31,658 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""

import math
import warnings
from functools import partial
from typing import Callable, Iterable, Optional, Tuple, Union

import torch
from torch import nn
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR, ReduceLROnPlateau

from .trainer_utils import SchedulerType
from .utils import logging
from .utils.versions import require_version


logger = logging.get_logger(__name__)


def _get_constant_lambda(_=None):
    return 1


def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1):
    """
    Create a schedule with a constant learning rate, using the learning rate set in optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    return LambdaLR(optimizer, _get_constant_lambda, last_epoch=last_epoch)


def get_reduce_on_plateau_schedule(optimizer: Optimizer):
    """
    Create a schedule with a constant learning rate that decreases when a metric has stopped improving.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.

    Return:
        `torch.optim.lr_scheduler.ReduceLROnPlateau` with the appropriate schedule.
    """

    return ReduceLROnPlateau(optimizer)


def _get_constant_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1.0, num_warmup_steps))
    return 1.0


def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1):
    """
    Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
    increases linearly between 0 and the initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    lr_lambda = partial(_get_constant_schedule_with_warmup_lr_lambda, num_warmup_steps=num_warmup_steps)
    return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)


def _get_linear_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)))


def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
    """
    Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
    a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    lr_lambda = partial(
        _get_linear_schedule_with_warmup_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)


def _get_cosine_schedule_with_warmup_lr_lambda(
    current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: float
):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
    return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))


def get_cosine_schedule_with_warmup(
    optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
):
    """
    Create a schedule with a learning rate that decreases following the values of the cosine function between the
    initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
    initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        num_cycles (`float`, *optional*, defaults to 0.5):
            The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
            following a half-cosine).
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    lr_lambda = partial(
        _get_cosine_schedule_with_warmup_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
        num_cycles=num_cycles,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)


def _get_cosine_with_hard_restarts_schedule_with_warmup_lr_lambda(
    current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: int
):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
    if progress >= 1.0:
        return 0.0
    return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))


def get_cosine_with_hard_restarts_schedule_with_warmup(
    optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1
):
    """
    Create a schedule with a learning rate that decreases following the values of the cosine function between the
    initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
    linearly between 0 and the initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        num_cycles (`int`, *optional*, defaults to 1):
            The number of hard restarts to use.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    lr_lambda = partial(
        _get_cosine_with_hard_restarts_schedule_with_warmup_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
        num_cycles=num_cycles,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)


def _get_polynomial_decay_schedule_with_warmup_lr_lambda(
    current_step: int,
    *,
    num_warmup_steps: int,
    num_training_steps: int,
    lr_end: float,
    power: float,
    lr_init: int,
):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    elif current_step > num_training_steps:
        return lr_end / lr_init  # as LambdaLR multiplies by lr_init
    else:
        lr_range = lr_init - lr_end
        decay_steps = num_training_steps - num_warmup_steps
        pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
        decay = lr_range * pct_remaining**power + lr_end
        return decay / lr_init  # as LambdaLR multiplies by lr_init


def get_polynomial_decay_schedule_with_warmup(
    optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1
):
    """
    Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
    optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
    initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        lr_end (`float`, *optional*, defaults to 1e-7):
            The end LR.
        power (`float`, *optional*, defaults to 1.0):
            Power factor.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT
    implementation at
    https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.

    """

    lr_init = optimizer.defaults["lr"]
    if not (lr_init > lr_end):
        raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})")

    lr_lambda = partial(
        _get_polynomial_decay_schedule_with_warmup_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
        lr_end=lr_end,
        power=power,
        lr_init=lr_init,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)


def _get_inverse_sqrt_schedule_lr_lambda(current_step: int, *, num_warmup_steps: int, timescale: int = None):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    shift = timescale - num_warmup_steps
    decay = 1.0 / math.sqrt((current_step + shift) / timescale)
    return decay


def get_inverse_sqrt_schedule(
    optimizer: Optimizer, num_warmup_steps: int, timescale: int = None, last_epoch: int = -1
):
    """
    Create a schedule with an inverse square-root learning rate, from the initial lr set in the optimizer, after a
    warmup period which increases lr linearly from 0 to the initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        timescale (`int`, *optional*, defaults to `num_warmup_steps`):
            Time scale.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """
    # Note: this implementation is adapted from
    # https://github.com/google-research/big_vision/blob/f071ce68852d56099437004fd70057597a95f6ef/big_vision/utils.py#L930

    if timescale is None:
        timescale = num_warmup_steps

    lr_lambda = partial(_get_inverse_sqrt_schedule_lr_lambda, num_warmup_steps=num_warmup_steps, timescale=timescale)
    return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)


TYPE_TO_SCHEDULER_FUNCTION = {
    SchedulerType.LINEAR: get_linear_schedule_with_warmup,
    SchedulerType.COSINE: get_cosine_schedule_with_warmup,
    SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
    SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
    SchedulerType.CONSTANT: get_constant_schedule,
    SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
    SchedulerType.INVERSE_SQRT: get_inverse_sqrt_schedule,
    SchedulerType.REDUCE_ON_PLATEAU: get_reduce_on_plateau_schedule,
}


def get_scheduler(
    name: Union[str, SchedulerType],
    optimizer: Optimizer,
    num_warmup_steps: Optional[int] = None,
    num_training_steps: Optional[int] = None,
):
    """
    Unified API to get any scheduler from its name.

    Args:
        name (`str` or `SchedulerType`):
            The name of the scheduler to use.
        optimizer (`torch.optim.Optimizer`):
            The optimizer that will be used during training.
        num_warmup_steps (`int`, *optional*):
            The number of warmup steps to do. This is not required by all schedulers (hence the argument being
            optional), the function will raise an error if it's unset and the scheduler type requires it.
        num_training_steps (`int``, *optional*):
            The number of training steps to do. This is not required by all schedulers (hence the argument being
            optional), the function will raise an error if it's unset and the scheduler type requires it.
    """
    name = SchedulerType(name)
    schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
    if name == SchedulerType.CONSTANT or name == SchedulerType.REDUCE_ON_PLATEAU:
        return schedule_func(optimizer)

    # All other schedulers require `num_warmup_steps`
    if num_warmup_steps is None:
        raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")

    if name == SchedulerType.CONSTANT_WITH_WARMUP:
        return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)

    if name == SchedulerType.INVERSE_SQRT:
        return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)

    # All other schedulers require `num_training_steps`
    if num_training_steps is None:
        raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")

    return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)


class AdamW(Optimizer):
    """
    Implements Adam algorithm with weight decay fix as introduced in [Decoupled Weight Decay
    Regularization](https://arxiv.org/abs/1711.05101).

    Parameters:
        params (`Iterable[nn.parameter.Parameter]`):
            Iterable of parameters to optimize or dictionaries defining parameter groups.
        lr (`float`, *optional*, defaults to 0.001):
            The learning rate to use.
        betas (`Tuple[float,float]`, *optional*, defaults to `(0.9, 0.999)`):
            Adam's betas parameters (b1, b2).
        eps (`float`, *optional*, defaults to 1e-06):
            Adam's epsilon for numerical stability.
        weight_decay (`float`, *optional*, defaults to 0.0):
            Decoupled weight decay to apply.
        correct_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to correct bias in Adam (for instance, in Bert TF repository they use `False`).
        no_deprecation_warning (`bool`, *optional*, defaults to `False`):
            A flag used to disable the deprecation warning (set to `True` to disable the warning).
    """

    def __init__(
        self,
        params: Iterable[nn.parameter.Parameter],
        lr: float = 1e-3,
        betas: Tuple[float, float] = (0.9, 0.999),
        eps: float = 1e-6,
        weight_decay: float = 0.0,
        correct_bias: bool = True,
        no_deprecation_warning: bool = False,
    ):
        if not no_deprecation_warning:
            warnings.warn(
                "This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch"
                " implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this"
                " warning",
                FutureWarning,
            )
        require_version("torch>=1.5.0")  # add_ with alpha
        if lr < 0.0:
            raise ValueError(f"Invalid learning rate: {lr} - should be >= 0.0")
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError(f"Invalid beta parameter: {betas[0]} - should be in [0.0, 1.0)")
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError(f"Invalid beta parameter: {betas[1]} - should be in [0.0, 1.0)")
        if not 0.0 <= eps:
            raise ValueError(f"Invalid epsilon value: {eps} - should be >= 0.0")
        defaults = {"lr": lr, "betas": betas, "eps": eps, "weight_decay": weight_decay, "correct_bias": correct_bias}
        super().__init__(params, defaults)

    @torch.no_grad()
    def step(self, closure: Callable = None):
        """
        Performs a single optimization step.

        Arguments:
            closure (`Callable`, *optional*): A closure that reevaluates the model and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad
                if grad.is_sparse:
                    raise RuntimeError("Adam does not support sparse gradients, please consider SparseAdam instead")

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state["step"] = 0
                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(p)
                    # Exponential moving average of squared gradient values
                    state["exp_avg_sq"] = torch.zeros_like(p)

                exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
                beta1, beta2 = group["betas"]

                state["step"] += 1

                # Decay the first and second moment running average coefficient
                # In-place operations to update the averages at the same time
                exp_avg.mul_(beta1).add_(grad, alpha=(1.0 - beta1))
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2)
                denom = exp_avg_sq.sqrt().add_(group["eps"])

                step_size = group["lr"]
                if group["correct_bias"]:  # No bias correction for Bert
                    bias_correction1 = 1.0 - beta1 ** state["step"]
                    bias_correction2 = 1.0 - beta2 ** state["step"]
                    step_size = step_size * math.sqrt(bias_correction2) / bias_correction1

                p.addcdiv_(exp_avg, denom, value=-step_size)

                # Just adding the square of the weights to the loss function is *not*
                # the correct way of using L2 regularization/weight decay with Adam,
                # since that will interact with the m and v parameters in strange ways.
                #
                # Instead we want to decay the weights in a manner that doesn't interact
                # with the m/v parameters. This is equivalent to adding the square
                # of the weights to the loss with plain (non-momentum) SGD.
                # Add weight decay at the end (fixed version)
                if group["weight_decay"] > 0.0:
                    p.add_(p, alpha=(-group["lr"] * group["weight_decay"]))

        return loss


class Adafactor(Optimizer):
    """
    AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code:
    https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py

    Paper: *Adafactor: Adaptive Learning Rates with Sublinear Memory Cost* https://arxiv.org/abs/1804.04235 Note that
    this optimizer internally adjusts the learning rate depending on the `scale_parameter`, `relative_step` and
    `warmup_init` options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and
    `relative_step=False`.

    Arguments:
        params (`Iterable[nn.parameter.Parameter]`):
            Iterable of parameters to optimize or dictionaries defining parameter groups.
        lr (`float`, *optional*):
            The external learning rate.
        eps (`Tuple[float, float]`, *optional*, defaults to `(1e-30, 0.001)`):
            Regularization constants for square gradient and parameter scale respectively
        clip_threshold (`float`, *optional*, defaults to 1.0):
            Threshold of root mean square of final gradient update
        decay_rate (`float`, *optional*, defaults to -0.8):
            Coefficient used to compute running averages of square
        beta1 (`float`, *optional*):
            Coefficient used for computing running averages of gradient
        weight_decay (`float`, *optional*, defaults to 0.0):
            Weight decay (L2 penalty)
        scale_parameter (`bool`, *optional*, defaults to `True`):
            If True, learning rate is scaled by root mean square
        relative_step (`bool`, *optional*, defaults to `True`):
            If True, time-dependent learning rate is computed instead of external learning rate
        warmup_init (`bool`, *optional*, defaults to `False`):
            Time-dependent learning rate computation depends on whether warm-up initialization is being used

    This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested.

    Recommended T5 finetuning settings (https://discuss.huggingface.co/t/t5-finetuning-tips/684/3):

        - Training without LR warmup or clip_threshold is not recommended.

           - use scheduled LR warm-up to fixed LR
           - use clip_threshold=1.0 (https://arxiv.org/abs/1804.04235)
        - Disable relative updates
        - Use scale_parameter=False
        - Additional optimizer operations like gradient clipping should not be used alongside Adafactor

    Example:

    ```python
    Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=1e-3)
    ```

    Others reported the following combination to work well:

    ```python
    Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
    ```

    When using `lr=None` with [`Trainer`] you will most likely need to use [`~optimization.AdafactorSchedule`]
    scheduler as following:

    ```python
    from transformers.optimization import Adafactor, AdafactorSchedule

    optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
    lr_scheduler = AdafactorSchedule(optimizer)
    trainer = Trainer(..., optimizers=(optimizer, lr_scheduler))
    ```

    Usage:

    ```python
    # replace AdamW with Adafactor
    optimizer = Adafactor(
        model.parameters(),
        lr=1e-3,
        eps=(1e-30, 1e-3),
        clip_threshold=1.0,
        decay_rate=-0.8,
        beta1=None,
        weight_decay=0.0,
        relative_step=False,
        scale_parameter=False,
        warmup_init=False,
    )
    ```"""

    def __init__(
        self,
        params,
        lr=None,
        eps=(1e-30, 1e-3),
        clip_threshold=1.0,
        decay_rate=-0.8,
        beta1=None,
        weight_decay=0.0,
        scale_parameter=True,
        relative_step=True,
        warmup_init=False,
    ):
        require_version("torch>=1.5.0")  # add_ with alpha
        if lr is not None and relative_step:
            raise ValueError("Cannot combine manual `lr` and `relative_step=True` options")
        if warmup_init and not relative_step:
            raise ValueError("`warmup_init=True` requires `relative_step=True`")

        defaults = {
            "lr": lr,
            "eps": eps,
            "clip_threshold": clip_threshold,
            "decay_rate": decay_rate,
            "beta1": beta1,
            "weight_decay": weight_decay,
            "scale_parameter": scale_parameter,
            "relative_step": relative_step,
            "warmup_init": warmup_init,
        }
        super().__init__(params, defaults)

    @staticmethod
    def _get_lr(param_group, param_state):
        rel_step_sz = param_group["lr"]
        if param_group["relative_step"]:
            min_step = 1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2
            rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
        param_scale = 1.0
        if param_group["scale_parameter"]:
            param_scale = max(param_group["eps"][1], param_state["RMS"])
        return param_scale * rel_step_sz

    @staticmethod
    def _get_options(param_group, param_shape):
        factored = len(param_shape) >= 2
        use_first_moment = param_group["beta1"] is not None
        return factored, use_first_moment

    @staticmethod
    def _rms(tensor):
        return tensor.norm(2) / (tensor.numel() ** 0.5)

    @staticmethod
    def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
        # copy from fairseq's adafactor implementation:
        # https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505
        r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1)
        c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
        return torch.mul(r_factor, c_factor)

    @torch.no_grad()
    def step(self, closure=None):
        """
        Performs a single optimization step

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad
                if grad.dtype in {torch.float16, torch.bfloat16}:
                    grad = grad.float()
                if grad.is_sparse:
                    raise RuntimeError("Adafactor does not support sparse gradients.")

                state = self.state[p]
                grad_shape = grad.shape

                factored, use_first_moment = self._get_options(group, grad_shape)
                # State Initialization
                if len(state) == 0:
                    state["step"] = 0

                    if use_first_moment:
                        # Exponential moving average of gradient values
                        state["exp_avg"] = torch.zeros_like(grad)
                    if factored:
                        state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
                        state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad)
                    else:
                        state["exp_avg_sq"] = torch.zeros_like(grad)

                    state["RMS"] = 0
                else:
                    if use_first_moment:
                        state["exp_avg"] = state["exp_avg"].to(grad)
                    if factored:
                        state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
                        state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
                    else:
                        state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)

                p_data_fp32 = p
                if p.dtype in {torch.float16, torch.bfloat16}:
                    p_data_fp32 = p_data_fp32.float()

                state["step"] += 1
                state["RMS"] = self._rms(p_data_fp32)
                lr = self._get_lr(group, state)

                beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
                update = (grad**2) + group["eps"][0]
                if factored:
                    exp_avg_sq_row = state["exp_avg_sq_row"]
                    exp_avg_sq_col = state["exp_avg_sq_col"]

                    exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t))
                    exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t))

                    # Approximation of exponential moving average of square of gradient
                    update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
                    update.mul_(grad)
                else:
                    exp_avg_sq = state["exp_avg_sq"]

                    exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
                    update = exp_avg_sq.rsqrt().mul_(grad)

                update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
                update.mul_(lr)

                if use_first_moment:
                    exp_avg = state["exp_avg"]
                    exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"]))
                    update = exp_avg

                if group["weight_decay"] != 0:
                    p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr))

                p_data_fp32.add_(-update)

                if p.dtype in {torch.float16, torch.bfloat16}:
                    p.copy_(p_data_fp32)

        return loss


class AdafactorSchedule(LambdaLR):
    """
    Since [`~optimization.Adafactor`] performs its own scheduling, if the training loop relies on a scheduler (e.g.,
    for logging), this class creates a proxy object that retrieves the current lr values from the optimizer.

    It returns `initial_lr` during startup and the actual `lr` during stepping.
    """

    def __init__(self, optimizer, initial_lr=0.0):
        def lr_lambda(_):
            return initial_lr

        for group in optimizer.param_groups:
            group["initial_lr"] = initial_lr
        super().__init__(optimizer, lr_lambda)
        for group in optimizer.param_groups:
            del group["initial_lr"]

    def get_lr(self):
        opt = self.optimizer
        lrs = [
            opt._get_lr(group, opt.state[group["params"][0]])
            for group in opt.param_groups
            if group["params"][0].grad is not None
        ]
        if len(lrs) == 0:
            lrs = self.base_lrs  # if called before stepping
        return lrs


def get_adafactor_schedule(optimizer, initial_lr=0.0):
    """
    Get a proxy schedule for [`~optimization.Adafactor`]

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        initial_lr (`float`, *optional*, defaults to 0.0):
            Initial lr

    Return:
        [`~optimization.Adafactor`] proxy schedule object.


    """
    return AdafactorSchedule(optimizer, initial_lr)