File size: 4,061 Bytes
7a7f9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3aa1a
7a7f9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torch.nn.functional as F


class MLP(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes, dropout_prob=0.1):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(dropout_prob)
        self.fc2 = nn.Linear(hidden_size, num_classes)

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.dropout(out)
        out = self.fc2(out)
        return out


def show_anns(anns, color_code='auto'):
    if len(anns) == 0:
        return
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
    ax = plt.gca()
    ax.set_autoscale_on(False)
    polygons = []
    color = []
    for ann in sorted_anns:
        m = ann['segmentation']
        img = np.ones((m.shape[0], m.shape[1], 3))
        color_mask = np.random.random((1, 3)).tolist()[0]
        if color_code == 'auto':
            for i in range(3):
                img[:,:,i] = color_mask[i]
        elif color_code == 'red':
            for i in range(3):
                img[:,:,0] = 1
                img[:,:,1] = 0
                img[:,:,2] = 0
        else:
            for i in range(3):
                img[:,:,0] = 0
                img[:,:,1] = 0
                img[:,:,2] = 1
    return np.dstack((img, m*0.35))


def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', 
               s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', 
               s=marker_size, edgecolor='white', linewidth=1.25)   

def ram_show_mask(m):
    img = np.ones((m.shape[0], m.shape[1], 3))
    color_mask = np.random.random((1, 3)).tolist()[0]
    for i in range(3):
        img[:,:,0] = 1
        img[:,:,1] = 0
        img[:,:,2] = 0

    return np.dstack((img, m*0.35))


def iou(mask1, mask2):
    intersection = np.logical_and(mask1, mask2)
    union = np.logical_or(mask1, mask2)
    iou_score = np.sum(intersection) / np.sum(union)
    return iou_score


def sort_and_deduplicate(sam_masks, iou_threshold=0.8):
    # Sort the sam_masks list based on the area value
    sorted_masks = sorted(sam_masks, key=lambda x: x['area'], reverse=True)

    # Deduplicate masks based on the given iou_threshold
    filtered_masks = []
    for mask in sorted_masks:
        duplicate = False
        for filtered_mask in filtered_masks:
            if iou(mask['segmentation'], filtered_mask['segmentation']) > iou_threshold:
                duplicate = True
                break

        if not duplicate:
            filtered_masks.append(mask)

    return filtered_masks


relation_classes = ['over',
        'in front of',
        'beside',
        'on',
        'in',
        'attached to',
        'hanging from',
        'on back of',
        'falling off',
        'going down',
        'painted on',
        'walking on',
        'running on',
        'crossing',
        'standing on',
        'lying on',
        'sitting on',
        'flying over',
        'jumping over',
        'jumping from',
        'wearing',
        'holding',
        'carrying',
        'looking at',
        'guiding',
        'kissing',
        'eating',
        'drinking',
        'feeding',
        'biting',
        'catching',
        'picking',
        'playing with',
        'chasing',
        'climbing',
        'cleaning',
        'playing',
        'touching',
        'pushing',
        'pulling',
        'opening',
        'cooking',
        'talking to',
        'throwing',
        'slicing',
        'driving',
        'riding',
        'parked on',
        'driving on',
        'about to hit',
        'kicking',
        'swinging',
        'entering',
        'exiting',
        'enclosing',
        'leaning on',]