Spaces:
Running
on
T4
Running
on
T4
import os | |
import time | |
from datetime import timedelta | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmengine.config import Config | |
from mmengine.utils import ProgressBar | |
from transformers import AutoConfig, AutoModel | |
class RamDataset(torch.utils.data.Dataset): | |
def __init__(self, data_path, is_train=True, num_relation_classes=56): | |
super().__init__() | |
self.num_relation_classes = num_relation_classes | |
data = np.load(data_path, allow_pickle=True) | |
self.samples = data["arr_0"] | |
sample_num = self.samples.size | |
self.sample_idx_list = [] | |
for idx in range(sample_num): | |
if self.samples[idx]["is_train"] == is_train: | |
self.sample_idx_list.append(idx) | |
def __getitem__(self, idx): | |
sample = self.samples[self.sample_idx_list[idx]] | |
object_num = sample["feat"].shape[0] | |
embedding = torch.from_numpy(sample["feat"]) | |
gt_rels = sample["relations"] | |
rel_target = self._get_target(object_num, gt_rels) | |
return embedding, rel_target, gt_rels | |
def __len__(self): | |
return len(self.sample_idx_list) | |
def _get_target(self, object_num, gt_rels): | |
rel_target = torch.zeros([self.num_relation_classes, object_num, object_num]) | |
for ii, jj, cls_relationship in gt_rels: | |
rel_target[cls_relationship, ii, jj] = 1 | |
return rel_target | |
class RamModel(nn.Module): | |
def __init__( | |
self, | |
pretrained_model_name_or_path, | |
load_pretrained_weights=True, | |
num_transformer_layer=2, | |
input_feature_size=256, | |
output_feature_size=768, | |
cls_feature_size=512, | |
num_relation_classes=56, | |
pred_type="attention", | |
loss_type="bce", | |
): | |
super().__init__() | |
# 0. config | |
self.cls_feature_size = cls_feature_size | |
self.num_relation_classes = num_relation_classes | |
self.pred_type = pred_type | |
self.loss_type = loss_type | |
# 1. fc input and output | |
self.fc_input = nn.Sequential( | |
nn.Linear(input_feature_size, output_feature_size), | |
nn.LayerNorm(output_feature_size), | |
) | |
self.fc_output = nn.Sequential( | |
nn.Linear(output_feature_size, output_feature_size), | |
nn.LayerNorm(output_feature_size), | |
) | |
# 2. transformer model | |
if load_pretrained_weights: | |
self.model = AutoModel.from_pretrained(pretrained_model_name_or_path) | |
else: | |
config = AutoConfig.from_pretrained(pretrained_model_name_or_path) | |
self.model = AutoModel.from_config(config) | |
if num_transformer_layer != "all" and isinstance(num_transformer_layer, int): | |
self.model.encoder.layer = self.model.encoder.layer[:num_transformer_layer] | |
# 3. predict head | |
self.cls_sub = nn.Linear(output_feature_size, cls_feature_size * num_relation_classes) | |
self.cls_obj = nn.Linear(output_feature_size, cls_feature_size * num_relation_classes) | |
# 4. loss | |
if self.loss_type == "bce": | |
self.bce_loss = nn.BCEWithLogitsLoss() | |
elif self.loss_type == "multi_label_ce": | |
print("Use Multi Label Cross Entropy Loss.") | |
def forward(self, embeds, attention_mask=None): | |
""" | |
embeds: (batch_size, token_num, feature_size) | |
attention_mask: (batch_size, token_num) | |
""" | |
# 1. fc input | |
embeds = self.fc_input(embeds) | |
# 2. transformer model | |
position_ids = torch.ones([1, embeds.shape[1]]).to(embeds.device).to(torch.long) | |
outputs = self.model.forward(inputs_embeds=embeds, attention_mask=attention_mask, position_ids=position_ids) | |
embeds = outputs["last_hidden_state"] | |
# 3. fc output | |
embeds = self.fc_output(embeds) | |
# 4. predict head | |
batch_size, token_num, feature_size = embeds.shape | |
sub_embeds = self.cls_sub(embeds).reshape([batch_size, token_num, self.num_relation_classes, self.cls_feature_size]).permute([0, 2, 1, 3]) | |
obj_embeds = self.cls_obj(embeds).reshape([batch_size, token_num, self.num_relation_classes, self.cls_feature_size]).permute([0, 2, 1, 3]) | |
if self.pred_type == "attention": | |
cls_pred = sub_embeds @ torch.transpose(obj_embeds, 2, 3) / self.cls_feature_size**0.5 # noqa | |
elif self.pred_type == "einsum": | |
cls_pred = torch.einsum("nrsc,nroc->nrso", sub_embeds, obj_embeds) | |
return cls_pred | |
def loss(self, pred, target, attention_mask): | |
loss_dict = dict() | |
batch_size, relation_num, _, _ = pred.shape | |
mask = torch.zeros_like(pred).to(pred.device) | |
for idx in range(batch_size): | |
n = torch.sum(attention_mask[idx]).to(torch.int) | |
mask[idx, :, :n, :n] = 1 | |
pred = pred * mask - 9999 * (1 - mask) | |
if self.loss_type == "bce": | |
loss = self.bce_loss(pred, target) | |
elif self.loss_type == "multi_label_ce": | |
input_tensor = torch.permute(pred, (1, 0, 2, 3)) | |
target_tensor = torch.permute(target, (1, 0, 2, 3)) | |
input_tensor = pred.reshape([relation_num, -1]) | |
target_tensor = target.reshape([relation_num, -1]) | |
loss = self.multilabel_categorical_crossentropy(target_tensor, input_tensor) | |
weight = loss / loss.max() | |
loss = loss * weight | |
loss = loss.mean() | |
loss_dict["loss"] = loss | |
# running metric | |
recall_20 = get_recall_N(pred, target, object_num=20) | |
loss_dict["recall@20"] = recall_20 | |
return loss_dict | |
def multilabel_categorical_crossentropy(self, y_true, y_pred): | |
""" | |
https://kexue.fm/archives/7359 | |
""" | |
y_pred = (1 - 2 * y_true) * y_pred | |
y_pred_neg = y_pred - y_true * 9999 | |
y_pred_pos = y_pred - (1 - y_true) * 9999 | |
zeros = torch.zeros_like(y_pred[..., :1]) | |
y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1) | |
y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1) | |
neg_loss = torch.logsumexp(y_pred_neg, dim=-1) | |
pos_loss = torch.logsumexp(y_pred_pos, dim=-1) | |
return neg_loss + pos_loss | |
def get_recall_N(y_pred, y_true, object_num=20): | |
""" | |
y_pred: [batch_size, 56, object_num, object_num] | |
y_true: [batch_size, 56, object_num, object_num] | |
""" | |
device = y_pred.device | |
recall_list = [] | |
for idx in range(len(y_true)): | |
sample_y_true = [] | |
sample_y_pred = [] | |
# find topk | |
_, topk_indices = torch.topk( | |
y_true[idx : idx + 1].reshape( | |
[ | |
-1, | |
] | |
), | |
k=object_num, | |
) | |
for index in topk_indices: | |
pred_cls = index // (y_true.shape[2] ** 2) | |
index_subject_object = index % (y_true.shape[2] ** 2) | |
pred_subject = index_subject_object // y_true.shape[2] | |
pred_object = index_subject_object % y_true.shape[2] | |
if y_true[idx, pred_cls, pred_subject, pred_object] == 0: | |
continue | |
sample_y_true.append([pred_subject, pred_object, pred_cls]) | |
# find topk | |
_, topk_indices = torch.topk( | |
y_pred[idx : idx + 1].reshape( | |
[ | |
-1, | |
] | |
), | |
k=object_num, | |
) | |
for index in topk_indices: | |
pred_cls = index // (y_pred.shape[2] ** 2) | |
index_subject_object = index % (y_pred.shape[2] ** 2) | |
pred_subject = index_subject_object // y_pred.shape[2] | |
pred_object = index_subject_object % y_pred.shape[2] | |
sample_y_pred.append([pred_subject, pred_object, pred_cls]) | |
recall = len([x for x in sample_y_pred if x in sample_y_true]) / (len(sample_y_true) + 1e-8) | |
recall_list.append(recall) | |
recall = torch.tensor(recall_list).to(device).mean() * 100 | |
return recall | |
class RamTrainer(object): | |
def __init__(self, config): | |
self.config = config | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self._build_dataset() | |
self._build_dataloader() | |
self._build_model() | |
self._build_optimizer() | |
self._build_lr_scheduler() | |
def _build_dataset(self): | |
self.dataset = RamDataset(**self.config.dataset) | |
def _build_dataloader(self): | |
self.dataloader = torch.utils.data.DataLoader( | |
self.dataset, | |
batch_size=self.config.dataloader.batch_size, | |
shuffle=True if self.config.dataset.is_train else False, | |
) | |
def _build_model(self): | |
self.model = RamModel(**self.config.model).to(self.device) | |
if self.config.load_from is not None: | |
self.model.load_state_dict(torch.load(self.config.load_from)) | |
self.model.train() | |
def _build_optimizer(self): | |
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.config.optim.lr, weight_decay=self.config.optim.weight_decay, eps=self.config.optim.eps, betas=self.config.optim.betas) | |
def _build_lr_scheduler(self): | |
self.lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=self.config.optim.lr_scheduler.step, gamma=self.config.optim.lr_scheduler.gamma) | |
def train(self): | |
t_start = time.time() | |
running_avg_loss = 0 | |
for epoch_idx in range(self.config.num_epoch): | |
for batch_idx, batch_data in enumerate(self.dataloader): | |
batch_embeds = batch_data[0].to(torch.float32).to(self.device) | |
batch_target = batch_data[1].to(torch.float32).to(self.device) | |
attention_mask = batch_embeds.new_ones((batch_embeds.shape[0], batch_embeds.shape[1])) | |
batch_pred = self.model.forward(batch_embeds, attention_mask) | |
loss_dict = self.model.loss(batch_pred, batch_target, attention_mask) | |
loss = loss_dict["loss"] | |
recall_20 = loss_dict["recall@20"] | |
self.optimizer.zero_grad() | |
loss.backward() | |
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.optim.max_norm, self.config.optim.norm_type) | |
self.optimizer.step() | |
running_avg_loss += loss.item() | |
if batch_idx % 100 == 0: | |
t_current = time.time() | |
num_finished_step = epoch_idx * self.config.num_epoch * len(self.dataloader) + batch_idx + 1 | |
num_to_do_step = (self.config.num_epoch - epoch_idx - 1) * len(self.dataloader) + (len(self.dataloader) - batch_idx - 1) | |
avg_speed = num_finished_step / (t_current - t_start) | |
eta = num_to_do_step / avg_speed | |
print( | |
"ETA={:0>8}, Epoch={}, Batch={}/{}, LR={}, Loss={:.4f}, RunningAvgLoss={:.4f}, Recall@20={:.2f}%".format( | |
str(timedelta(seconds=int(eta))), epoch_idx + 1, batch_idx, len(self.dataloader), self.lr_scheduler.get_last_lr()[0], loss.item(), running_avg_loss / num_finished_step, recall_20.item() | |
) | |
) | |
self.lr_scheduler.step() | |
if not os.path.exists(self.config.output_dir): | |
os.makedirs(self.config.output_dir) | |
save_path = os.path.join(self.config.output_dir, "epoch_{}.pth".format(epoch_idx + 1)) | |
print("Save epoch={} checkpoint to {}".format(epoch_idx + 1, save_path)) | |
torch.save(self.model.state_dict(), save_path) | |
return save_path | |
class RamPredictor(object): | |
def __init__(self, config): | |
self.config = config | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self._build_dataset() | |
self._build_dataloader() | |
self._build_model() | |
def _build_dataset(self): | |
self.dataset = RamDataset(**self.config.dataset) | |
def _build_dataloader(self): | |
self.dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.config.dataloader.batch_size, shuffle=False) | |
def _build_model(self): | |
self.model = RamModel(**self.config.model).to(self.device) | |
if self.config.load_from is not None: | |
self.model.load_state_dict(torch.load(self.config.load_from)) | |
self.model.eval() | |
def predict(self, batch_embeds, pred_keep_num=100): | |
""" | |
Parameters | |
---------- | |
batch_embeds: (batch_size=1, token_num, feature_size) | |
pred_keep_num: int | |
Returns | |
------- | |
batch_pred: (batch_size, relation_num, object_num, object_num) | |
pred_rels: [[sub_id, obj_id, rel_id], ...] | |
""" | |
if not isinstance(batch_embeds, torch.Tensor): | |
batch_embeds = torch.asarray(batch_embeds) | |
batch_embeds = batch_embeds.to(torch.float32).to(self.device) | |
attention_mask = batch_embeds.new_ones((batch_embeds.shape[0], batch_embeds.shape[1])) | |
batch_pred = self.model.forward(batch_embeds, attention_mask) | |
for idx_i in range(batch_pred.shape[2]): | |
batch_pred[:, :, idx_i, idx_i] = -9999 | |
batch_pred = batch_pred.sigmoid() | |
pred_rels = [] | |
_, topk_indices = torch.topk( | |
batch_pred.reshape( | |
[ | |
-1, | |
] | |
), | |
k=pred_keep_num, | |
) | |
# subject, object, relation | |
for index in topk_indices: | |
pred_relation = index // (batch_pred.shape[2] ** 2) | |
index_subject_object = index % (batch_pred.shape[2] ** 2) | |
pred_subject = index_subject_object // batch_pred.shape[2] | |
pred_object = index_subject_object % batch_pred.shape[2] | |
pred = [pred_subject.item(), pred_object.item(), pred_relation.item()] | |
pred_rels.append(pred) | |
return batch_pred, pred_rels | |
def eval(self): | |
sum_recall_20 = 0.0 | |
sum_recall_50 = 0.0 | |
sum_recall_100 = 0.0 | |
prog_bar = ProgressBar(len(self.dataloader)) | |
for batch_idx, batch_data in enumerate(self.dataloader): | |
batch_embeds = batch_data[0] | |
batch_target = batch_data[1] | |
gt_rels = batch_data[2] | |
batch_pred, pred_rels = self.predict(batch_embeds) | |
this_recall_20 = get_recall_N(batch_pred, batch_target, object_num=20) | |
this_recall_50 = get_recall_N(batch_pred, batch_target, object_num=50) | |
this_recall_100 = get_recall_N(batch_pred, batch_target, object_num=100) | |
sum_recall_20 += this_recall_20.item() | |
sum_recall_50 += this_recall_50.item() | |
sum_recall_100 += this_recall_100.item() | |
prog_bar.update() | |
recall_20 = sum_recall_20 / len(self.dataloader) | |
recall_50 = sum_recall_50 / len(self.dataloader) | |
recall_100 = sum_recall_100 / len(self.dataloader) | |
metric = { | |
"recall_20": recall_20, | |
"recall_50": recall_50, | |
"recall_100": recall_100, | |
} | |
return metric | |
if __name__ == "__main__": | |
# Config | |
config = dict( | |
dataset=dict( | |
data_path="./data/feat_0420.npz", | |
is_train=True, | |
num_relation_classes=56, | |
), | |
dataloader=dict( | |
batch_size=4, | |
), | |
model=dict( | |
pretrained_model_name_or_path="bert-base-uncased", | |
load_pretrained_weights=True, | |
num_transformer_layer=2, | |
input_feature_size=256, | |
output_feature_size=768, | |
cls_feature_size=512, | |
num_relation_classes=56, | |
pred_type="attention", | |
loss_type="multi_label_ce", | |
), | |
optim=dict( | |
lr=1e-4, | |
weight_decay=0.05, | |
eps=1e-8, | |
betas=(0.9, 0.999), | |
max_norm=0.01, | |
norm_type=2, | |
lr_scheduler=dict( | |
step=[6, 10], | |
gamma=0.1, | |
), | |
), | |
num_epoch=12, | |
output_dir="./work_dirs", | |
load_from=None, | |
) | |
# Train | |
config = Config(config) | |
trainer = RamTrainer(config) | |
last_model_path = trainer.train() | |
# Test/Eval | |
config.dataset.is_train = False | |
config.load_from = last_model_path | |
predictor = RamPredictor(config) | |
metric = predictor.eval() | |
print(metric) | |