Spaces:
Starting
on
T4
Starting
on
T4
import uuid | |
from typing import Any, Dict, List, Union | |
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging | |
from .base import PIPELINE_INIT_ARGS, Pipeline | |
if is_tf_available(): | |
import tensorflow as tf | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
class Conversation: | |
""" | |
Utility class containing a conversation and its history. This class is meant to be used as an input to the | |
[`ConversationalPipeline`]. The conversation contains several utility functions to manage the addition of new user | |
inputs and generated model responses. | |
Arguments: | |
messages (Union[str, List[Dict[str, str]]], *optional*): | |
The initial messages to start the conversation, either a string, or a list of dicts containing "role" and | |
"content" keys. If a string is passed, it is interpreted as a single message with the "user" role. | |
conversation_id (`uuid.UUID`, *optional*): | |
Unique identifier for the conversation. If not provided, a random UUID4 id will be assigned to the | |
conversation. | |
Usage: | |
```python | |
conversation = Conversation("Going to the movies tonight - any suggestions?") | |
conversation.add_message({"role": "assistant", "content": "The Big lebowski."}) | |
conversation.add_message({"role": "user", "content": "Is it good?"}) | |
```""" | |
def __init__( | |
self, messages: Union[str, List[Dict[str, str]]] = None, conversation_id: uuid.UUID = None, **deprecated_kwargs | |
): | |
if not conversation_id: | |
conversation_id = uuid.uuid4() | |
if messages is None: | |
text = deprecated_kwargs.pop("text", None) | |
if text is not None: | |
messages = [{"role": "user", "content": text}] | |
else: | |
messages = [] | |
elif isinstance(messages, str): | |
messages = [{"role": "user", "content": messages}] | |
# This block deals with the legacy args - new code should just totally | |
# avoid past_user_inputs and generated_responses | |
generated_responses = deprecated_kwargs.pop("generated_responses", None) | |
past_user_inputs = deprecated_kwargs.pop("past_user_inputs", None) | |
if generated_responses is not None and past_user_inputs is None: | |
raise ValueError("generated_responses cannot be passed without past_user_inputs!") | |
if past_user_inputs is not None: | |
legacy_messages = [] | |
if generated_responses is None: | |
generated_responses = [] | |
# We structure it this way instead of using zip() because the lengths may differ by 1 | |
for i in range(max([len(past_user_inputs), len(generated_responses)])): | |
if i < len(past_user_inputs): | |
legacy_messages.append({"role": "user", "content": past_user_inputs[i]}) | |
if i < len(generated_responses): | |
legacy_messages.append({"role": "assistant", "content": generated_responses[i]}) | |
messages = legacy_messages + messages | |
self.uuid = conversation_id | |
self.messages = messages | |
def __eq__(self, other): | |
if not isinstance(other, Conversation): | |
return False | |
return self.uuid == other.uuid or self.messages == other.messages | |
def add_message(self, message: Dict[str, str]): | |
if not set(message.keys()) == {"role", "content"}: | |
raise ValueError("Message should contain only 'role' and 'content' keys!") | |
if message["role"] not in ("user", "assistant", "system"): | |
raise ValueError("Only 'user', 'assistant' and 'system' roles are supported for now!") | |
self.messages.append(message) | |
def add_user_input(self, text: str, overwrite: bool = False): | |
""" | |
Add a user input to the conversation for the next round. This is a legacy method that assumes that inputs must | |
alternate user/assistant/user/assistant, and so will not add multiple user messages in succession. We recommend | |
just using `add_message` with role "user" instead. | |
""" | |
if len(self) > 0 and self[-1]["role"] == "user": | |
if overwrite: | |
logger.warning( | |
f'User input added while unprocessed input was existing: "{self[-1]["content"]}" was overwritten ' | |
f'with: "{text}".' | |
) | |
self[-1]["content"] = text | |
else: | |
logger.warning( | |
f'User input added while unprocessed input was existing: "{self[-1]["content"]}" new input ' | |
f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' | |
) | |
else: | |
self.messages.append({"role": "user", "content": text}) | |
def append_response(self, response: str): | |
""" | |
This is a legacy method. We recommend just using `add_message` with an appropriate role instead. | |
""" | |
self.messages.append({"role": "assistant", "content": response}) | |
def mark_processed(self): | |
""" | |
This is a legacy method that no longer has any effect, as the Conversation no longer distinguishes between | |
processed and unprocessed user input. | |
""" | |
pass | |
def __iter__(self): | |
for message in self.messages: | |
yield message | |
def __getitem__(self, item): | |
return self.messages[item] | |
def __setitem__(self, key, value): | |
self.messages[key] = value | |
def __len__(self): | |
return len(self.messages) | |
def __repr__(self): | |
""" | |
Generates a string representation of the conversation. | |
Returns: | |
`str`: | |
Example: | |
Conversation id: 7d15686b-dc94-49f2-9c4b-c9eac6a1f114 user: Going to the movies tonight - any suggestions? | |
bot: The Big Lebowski | |
""" | |
output = f"Conversation id: {self.uuid}\n" | |
for message in self.messages: | |
output += f"{message['role']}: {message['content']}\n" | |
return output | |
def iter_texts(self): | |
# This is a legacy method for backwards compatibility. It is recommended to just directly access | |
# conversation.messages instead. | |
for message in self.messages: | |
yield message["role"] == "user", message["content"] | |
def past_user_inputs(self): | |
# This is a legacy property for backwards compatibility. It is recommended to just directly access | |
# conversation.messages instead. | |
return [message["content"] for message in self.messages if message["role"] == "user"] | |
def generated_responses(self): | |
# This is a legacy property for backwards compatibility. It is recommended to just directly access | |
# conversation.messages instead. | |
return [message["content"] for message in self.messages if message["role"] == "assistant"] | |
class ConversationalPipeline(Pipeline): | |
""" | |
Multi-turn conversational pipeline. | |
Example: | |
```python | |
>>> from transformers import pipeline, Conversation | |
>>> chatbot = pipeline(model="microsoft/DialoGPT-medium") | |
>>> conversation = Conversation("Going to the movies tonight - any suggestions?") | |
>>> conversation = chatbot(conversation) | |
>>> conversation.generated_responses[-1] | |
'The Big Lebowski' | |
>>> conversation.add_user_input("Is it an action movie?") | |
>>> conversation = chatbot(conversation) | |
>>> conversation.generated_responses[-1] | |
"It's a comedy." | |
``` | |
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) | |
This conversational pipeline can currently be loaded from [`pipeline`] using the following task identifier: | |
`"conversational"`. | |
The models that this pipeline can use are models that have been fine-tuned on a multi-turn conversational task, | |
currently: *'microsoft/DialoGPT-small'*, *'microsoft/DialoGPT-medium'*, *'microsoft/DialoGPT-large'*. See the | |
up-to-date list of available models on | |
[huggingface.co/models](https://huggingface.co/models?filter=conversational). | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
if self.tokenizer.pad_token_id is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
def _sanitize_parameters( | |
self, min_length_for_response=None, minimum_tokens=None, clean_up_tokenization_spaces=None, **generate_kwargs | |
): | |
preprocess_params = {} | |
forward_params = {} | |
postprocess_params = {} | |
if min_length_for_response is not None: | |
preprocess_params["min_length_for_response"] = min_length_for_response | |
if minimum_tokens is not None: | |
forward_params["minimum_tokens"] = minimum_tokens | |
if "max_length" in generate_kwargs: | |
forward_params["max_length"] = generate_kwargs["max_length"] | |
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) | |
if clean_up_tokenization_spaces is not None: | |
postprocess_params["clean_up_tokenization_spaces"] = clean_up_tokenization_spaces | |
if generate_kwargs: | |
forward_params.update(generate_kwargs) | |
return preprocess_params, forward_params, postprocess_params | |
def __call__(self, conversations: Union[Conversation, List[Conversation]], num_workers=0, **kwargs): | |
r""" | |
Generate responses for the conversation(s) given as inputs. | |
Args: | |
conversations (a [`Conversation`] or a list of [`Conversation`]): | |
Conversations to generate responses for. | |
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): | |
Whether or not to clean up the potential extra spaces in the text output. | |
generate_kwargs: | |
Additional keyword arguments to pass along to the generate method of the model (see the generate method | |
corresponding to your framework [here](./model#generative-models)). | |
Returns: | |
[`Conversation`] or a list of [`Conversation`]: Conversation(s) with updated generated responses for those | |
containing a new user input. | |
""" | |
# XXX: num_workers==0 is required to be backward compatible | |
# Otherwise the threads will require a Conversation copy. | |
# This will definitely hinder performance on GPU, but has to be opted | |
# in because of this BC change. | |
outputs = super().__call__(conversations, num_workers=num_workers, **kwargs) | |
if isinstance(outputs, list) and len(outputs) == 1: | |
return outputs[0] | |
return outputs | |
def preprocess(self, conversation: Conversation, min_length_for_response=32) -> Dict[str, Any]: | |
input_ids = self.tokenizer.apply_chat_template(conversation, add_generation_prompt=True) | |
if self.framework == "pt": | |
input_ids = torch.LongTensor([input_ids]) | |
elif self.framework == "tf": | |
input_ids = tf.constant([input_ids]) | |
return {"input_ids": input_ids, "conversation": conversation} | |
def _forward(self, model_inputs, minimum_tokens=10, **generate_kwargs): | |
max_length = generate_kwargs.get("max_length", self.model.config.max_length) | |
n = model_inputs["input_ids"].shape[1] | |
if max_length - minimum_tokens < n: | |
logger.warning( | |
f"Conversation input is too long ({n}), trimming it to {max_length - minimum_tokens} tokens. Consider increasing `max_length` to avoid truncation." | |
) | |
trim = max_length - minimum_tokens | |
model_inputs["input_ids"] = model_inputs["input_ids"][:, -trim:] | |
if "attention_mask" in model_inputs: | |
model_inputs["attention_mask"] = model_inputs["attention_mask"][:, -trim:] | |
conversation = model_inputs.pop("conversation") | |
generate_kwargs["max_length"] = max_length | |
output_ids = self.model.generate(**model_inputs, **generate_kwargs) | |
if self.model.config.is_encoder_decoder: | |
start_position = 1 | |
else: | |
start_position = n | |
return {"output_ids": output_ids[:, start_position:], "conversation": conversation} | |
def postprocess(self, model_outputs, clean_up_tokenization_spaces=True): | |
output_ids = model_outputs["output_ids"] | |
answer = self.tokenizer.decode( | |
output_ids[0], | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
) | |
conversation = model_outputs["conversation"] | |
conversation.add_message({"role": "assistant", "content": answer}) | |
return conversation | |