|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import tensorflow as tf |
|
from packaging import version |
|
|
|
|
|
def _gelu(x): |
|
""" |
|
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when |
|
initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): |
|
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see |
|
https://arxiv.org/abs/1606.08415 |
|
""" |
|
x = tf.convert_to_tensor(x) |
|
cdf = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0), x.dtype))) |
|
|
|
return x * cdf |
|
|
|
|
|
def _gelu_new(x): |
|
""" |
|
Gaussian Error Linear Unit. This is a smoother version of the GELU. Original paper: https://arxiv.org/abs/1606.0841 |
|
|
|
Args: |
|
x: float Tensor to perform activation |
|
|
|
Returns: |
|
`x` with the GELU activation applied. |
|
""" |
|
x = tf.convert_to_tensor(x) |
|
pi = tf.cast(math.pi, x.dtype) |
|
coeff = tf.cast(0.044715, x.dtype) |
|
cdf = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coeff * tf.pow(x, 3)))) |
|
|
|
return x * cdf |
|
|
|
|
|
def mish(x): |
|
x = tf.convert_to_tensor(x) |
|
|
|
return x * tf.tanh(tf.math.softplus(x)) |
|
|
|
|
|
def gelu_fast(x): |
|
x = tf.convert_to_tensor(x) |
|
coeff1 = tf.cast(0.044715, x.dtype) |
|
coeff2 = tf.cast(0.7978845608, x.dtype) |
|
|
|
return 0.5 * x * (1.0 + tf.tanh(x * coeff2 * (1.0 + coeff1 * x * x))) |
|
|
|
|
|
def quick_gelu(x): |
|
x = tf.convert_to_tensor(x) |
|
coeff = tf.cast(1.702, x.dtype) |
|
return x * tf.math.sigmoid(coeff * x) |
|
|
|
|
|
def gelu_10(x): |
|
""" |
|
Clip the range of possible GeLU outputs between [-10, 10]. This is especially useful for quantization purpose, as |
|
it allows mapping 2 negatives values in the GeLU spectrum. For more information on this trick, please refer to |
|
https://arxiv.org/abs/2004.09602 |
|
|
|
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when |
|
initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): |
|
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see |
|
https://arxiv.org/abs/1606.08415 :param x: :return: |
|
""" |
|
return tf.clip_by_value(_gelu(x), -10, 10) |
|
|
|
|
|
def glu(x, axis=-1): |
|
""" |
|
Gated Linear Unit. Implementation as defined in the original paper (see https://arxiv.org/abs/1612.08083), where |
|
the input `x` is split in two halves across a dimension (`axis`), A and B, returning A * sigmoid(B). |
|
|
|
Args: |
|
`x`: float Tensor to perform activation |
|
`axis`: dimension across which `x` be split in half |
|
|
|
Returns: |
|
`x` with the GLU activation applied (with its size halved across the dimension `axis`). |
|
""" |
|
a, b = tf.split(x, 2, axis=axis) |
|
return a * tf.math.sigmoid(b) |
|
|
|
|
|
if version.parse(tf.version.VERSION) >= version.parse("2.4"): |
|
|
|
def approximate_gelu_wrap(x): |
|
return tf.keras.activations.gelu(x, approximate=True) |
|
|
|
gelu = tf.keras.activations.gelu |
|
gelu_new = approximate_gelu_wrap |
|
else: |
|
gelu = _gelu |
|
gelu_new = _gelu_new |
|
|
|
|
|
ACT2FN = { |
|
"gelu": gelu, |
|
"gelu_10": gelu_10, |
|
"gelu_fast": gelu_fast, |
|
"gelu_new": gelu_new, |
|
"glu": glu, |
|
"mish": mish, |
|
"quick_gelu": quick_gelu, |
|
"relu": tf.keras.activations.relu, |
|
"sigmoid": tf.keras.activations.sigmoid, |
|
"silu": tf.keras.activations.swish, |
|
"swish": tf.keras.activations.swish, |
|
"tanh": tf.keras.activations.tanh, |
|
} |
|
|
|
|
|
def get_tf_activation(activation_string): |
|
if activation_string in ACT2FN: |
|
return ACT2FN[activation_string] |
|
else: |
|
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}") |
|
|