liuyizhang
add transformers_4_35_0
1ce5e18
raw
history blame
4.74 kB
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
logger = logging.get_logger(__name__)
@dataclass
class TensorFlowBenchmarkArguments(BenchmarkArguments):
deprecated_args = [
"no_inference",
"no_cuda",
"no_tpu",
"no_speed",
"no_memory",
"no_env_print",
"no_multi_process",
]
def __init__(self, **kwargs):
"""
This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be
deleted
"""
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
positive_arg = deprecated_arg[3:]
kwargs[positive_arg] = not kwargs.pop(deprecated_arg)
logger.warning(
f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or"
f" {positive_arg}={kwargs[positive_arg]}"
)
self.tpu_name = kwargs.pop("tpu_name", self.tpu_name)
self.device_idx = kwargs.pop("device_idx", self.device_idx)
self.eager_mode = kwargs.pop("eager_mode", self.eager_mode)
self.use_xla = kwargs.pop("use_xla", self.use_xla)
super().__init__(**kwargs)
tpu_name: str = field(
default=None,
metadata={"help": "Name of TPU"},
)
device_idx: int = field(
default=0,
metadata={"help": "CPU / GPU device index. Defaults to 0."},
)
eager_mode: bool = field(default=False, metadata={"help": "Benchmark models in eager model."})
use_xla: bool = field(
default=False,
metadata={
"help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`."
},
)
@cached_property
def _setup_tpu(self) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self, ["tf"])
tpu = None
if self.tpu:
try:
if self.tpu_name:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name)
else:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
tpu = None
return tpu
@cached_property
def _setup_strategy(self) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self, ["tf"])
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu)
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu)
strategy = tf.distribute.TPUStrategy(self._setup_tpu)
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx], "GPU")
strategy = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}")
else:
tf.config.set_visible_devices([], "GPU") # disable GPU
strategy = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}")
return strategy
@property
def is_tpu(self) -> bool:
requires_backends(self, ["tf"])
return self._setup_tpu is not None
@property
def strategy(self) -> "tf.distribute.Strategy":
requires_backends(self, ["tf"])
return self._setup_strategy
@property
def gpu_list(self):
requires_backends(self, ["tf"])
return tf.config.list_physical_devices("GPU")
@property
def n_gpu(self) -> int:
requires_backends(self, ["tf"])
if self.cuda:
return len(self.gpu_list)
return 0
@property
def is_gpu(self) -> bool:
return self.n_gpu > 0