Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch BridgeTower Model""" | |
import math | |
from collections import OrderedDict | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...activations import ACT2FN, QuickGELUActivation | |
from ...modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
BaseModelOutputWithPoolingAndCrossAttentions, | |
MaskedLMOutput, | |
ModelOutput, | |
SequenceClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel, apply_chunking_to_forward | |
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings | |
from .configuration_bridgetower import BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "BridgeTowerConfig" | |
_CHECKPOINT_FOR_DOC = "BridgeTower/bridgetower-base" | |
_TOKENIZER_FOR_DOC = "RobertaTokenizer" | |
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"BridgeTower/bridgetower-base", | |
"BridgeTower/bridgetower-base-itm-mlm" | |
# See all bridgetower models at https://huggingface.co/BridgeTower | |
] | |
BRIDGETOWER_START_DOCSTRING = r""" | |
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`BridgeTowerConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
BRIDGETOWER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See | |
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input | |
IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`BridgeTowerImageProcessor`]. See | |
[`BridgeTowerImageProcessor.__call__`] for details. | |
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): | |
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: | |
- 1 for pixels that are real (i.e. **not masked**), | |
- 0 for pixels that are padding (i.e. **masked**). | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*): | |
Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `pixel_values` into patch embeddings. | |
image_token_type_idx (`int`, *optional*): | |
- The token type ids for images. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class BridgeTowerModelOutput(ModelOutput): | |
""" | |
Output type of [`BridgeTowerModel`]. | |
Args: | |
text_features (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_size)`): | |
Sequence of hidden-states at the text output of the last layer of the model. | |
image_features (`torch.FloatTensor` of shape `(batch_size, image_sequence_length, hidden_size)`): | |
Sequence of hidden-states at the image output of the last layer of the model. | |
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size x 2)`): | |
Concatenation of last layer hidden-state of the first token of the text and image sequence (classification | |
token), respectively, after further processing through layers used for auxiliary pretraining tasks. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of | |
the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
text_features: torch.FloatTensor = None | |
image_features: torch.FloatTensor = None | |
pooler_output: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class BridgeTowerContrastiveOutput(ModelOutput): | |
""" | |
Output type of ['BridgeTowerForContrastiveLearning'] | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`: | |
Image-text contrastive loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
text_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`): | |
The text embeddings obtained by applying the projection layer to the pooler_output. | |
image_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`): | |
The image embeddings obtained by applying the projection layer to the pooler_output. | |
cross_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`): | |
The text-image cross-modal embeddings obtained by applying the projection layer to the pooler_output. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of | |
the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
text_embeds: Optional[Tuple[torch.FloatTensor]] = None | |
image_embeds: Optional[Tuple[torch.FloatTensor]] = None | |
cross_embeds: Optional[Tuple[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class BridgeTowerResidualAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.attn = nn.MultiheadAttention(config.hidden_size, config.hidden_size // 64) | |
self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.mlp = nn.ModuleDict( | |
OrderedDict( | |
[ | |
("c_fc", nn.Linear(config.hidden_size, config.hidden_size * 4)), | |
("gelu", QuickGELUActivation()), | |
("c_proj", nn.Linear(config.hidden_size * 4, config.hidden_size)), | |
] | |
) | |
) | |
self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.attn_mask = None | |
def attention(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor): | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(dtype=torch.bool, device=hidden_state.device) | |
self.attn_mask = ( | |
self.attn_mask.to(dtype=hidden_state.dtype, device=hidden_state.device) | |
if self.attn_mask is not None | |
else None | |
) | |
return self.attn( | |
hidden_state, | |
hidden_state, | |
hidden_state, | |
need_weights=False, | |
attn_mask=self.attn_mask, | |
key_padding_mask=attention_mask, | |
)[0] | |
def forward(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor = None): | |
residual_state = hidden_state + self.attention(self.ln_1(hidden_state), attention_mask) | |
hidden_state = self.ln_2(residual_state) | |
for _, layer in self.mlp.items(): | |
hidden_state = layer(hidden_state) | |
hidden_state = residual_state + hidden_state | |
return hidden_state | |
class BridgeTowerTransformer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.num_hidden_layers = config.num_hidden_layers | |
if config.remove_last_layer: | |
self.resblocks = nn.ModuleList( | |
[BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers - 1)] | |
) | |
else: | |
self.resblocks = nn.ModuleList( | |
[BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers)] | |
) | |
self.stop_gradient = config.stop_gradient | |
def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): | |
hidden_states = [] | |
for block in self.resblocks: | |
hidden_state = block(hidden_state, attention_mask) | |
if self.stop_gradient: | |
hidden_states.append(hidden_state.detach()) | |
else: | |
hidden_states.append(hidden_state) | |
return hidden_states | |
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->BridgeTower | |
class BridgeTowerVisionEmbeddings(nn.Module): | |
def __init__(self, config: BridgeTowerVisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) | |
self.patch_embedding = nn.Conv2d( | |
in_channels=config.num_channels, | |
out_channels=self.embed_dim, | |
kernel_size=self.patch_size, | |
stride=self.patch_size, | |
bias=False, | |
) | |
self.num_patches = (self.image_size // self.patch_size) ** 2 | |
self.num_positions = self.num_patches + 1 | |
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) | |
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
batch_size = pixel_values.shape[0] | |
target_dtype = self.patch_embedding.weight.dtype | |
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] | |
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | |
class_embeds = self.class_embedding.expand(batch_size, 1, -1) | |
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | |
embeddings = embeddings + self.position_embedding(self.position_ids) | |
return embeddings | |
class BridgeTowerVisionTransformer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.embeddings = BridgeTowerVisionEmbeddings(config) | |
self.ln_pre = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.transformer = BridgeTowerTransformer(config) | |
self.ln_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.share_layernorm = config.share_layernorm | |
if not config.share_layernorm: | |
self.ln_separate = nn.ModuleList( | |
[nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) for _ in range(config.num_hidden_layers)] | |
) | |
def forward(self, pixel_values: torch.Tensor, attention_mask): | |
hidden_states = self.embeddings(pixel_values) | |
hidden_states = self.ln_pre(hidden_states) | |
# NLD -> LND | |
hidden_states = hidden_states.permute(1, 0, 2) | |
hidden_states = self.transformer(hidden_states, attention_mask) | |
# shape = [num_hidden_layers, hidden_size, *, grid ** 2] | |
hidden_states = torch.stack(hidden_states, dim=0) | |
# shape = [num_hidden_layers, *, hidden_size, grid ** 2] | |
hidden_states = hidden_states.permute(0, 2, 1, 3) | |
if self.share_layernorm: | |
hidden_states = self.ln_post(hidden_states) | |
else: | |
hidden_states_stack = [] | |
for hidden_states, ln in zip(hidden_states, self.ln_separate): | |
hidden_states = ln(hidden_states) | |
hidden_states_stack.append(hidden_states) | |
# shape = [num_hidden_layers, *, hidden_size, grid ** 2] | |
hidden_states = torch.stack(hidden_states_stack, dim=0) | |
return hidden_states | |
def forward_pre(self, pixel_values: torch.Tensor): | |
hidden_states = self.embeddings(pixel_values) | |
hidden_states = self.ln_pre(hidden_states) | |
# NLD -> LND | |
hidden_states = hidden_states.permute(1, 0, 2) | |
return hidden_states | |
def forward_post(self, hidden_state: torch.Tensor): | |
visual_output_post = hidden_state.permute(1, 0, 2) | |
visual_output_post = self.ln_post(visual_output_post) | |
return visual_output_post | |
class BridgeTowerLinkTower(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.link_tower_type = config.link_tower_type | |
self.hidden_size = config.hidden_size | |
if config.link_tower_type in ["add", "scaled_add", "interpolate"]: | |
if config.link_tower_type == "scaled_add": | |
self.scaled_factor = nn.Parameter(torch.tensor(1.0)) | |
elif config.link_tower_type == "interpolate": | |
self.beta = nn.Parameter(torch.tensor(0.5)) | |
self.LayerNorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) | |
else: | |
raise NotImplementedError(f"link_tower_type {config.link_tower_type} is not implemented") | |
def forward(self, hidden_states, cross_modal_hidden_states, attention_mask): | |
if self.link_tower_type == "add": | |
return self.LayerNorm(hidden_states + cross_modal_hidden_states) | |
elif self.link_tower_type == "scaled_add": | |
return self.LayerNorm(hidden_states * self.scaled_factor + cross_modal_hidden_states) | |
elif self.link_tower_type == "interpolate": | |
return self.LayerNorm(hidden_states * (1 - self.beta) + cross_modal_hidden_states * self.beta) | |
else: | |
raise NotImplementedError(f"link_tower_type {self.link_tower_type} is not implemented") | |
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BridgeTower | |
class BridgeTowerSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BridgeTower | |
class BridgeTowerIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BridgeTower | |
class BridgeTowerOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BridgeTower | |
class BridgeTowerPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->BridgeTower | |
class BridgeTowerSelfAttention(nn.Module): | |
def __init__(self, config, position_embedding_type=None): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.position_embedding_type = position_embedding_type or getattr( | |
config, "position_embedding_type", "absolute" | |
) | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
self.max_position_embeddings = config.max_position_embeddings | |
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) | |
self.is_decoder = config.is_decoder | |
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
mixed_query_layer = self.query(hidden_states) | |
# If this is instantiated as a cross-attention module, the keys | |
# and values come from an encoder; the attention mask needs to be | |
# such that the encoder's padding tokens are not attended to. | |
is_cross_attention = encoder_hidden_states is not None | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_layer = past_key_value[0] | |
value_layer = past_key_value[1] | |
attention_mask = encoder_attention_mask | |
elif is_cross_attention: | |
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | |
attention_mask = encoder_attention_mask | |
elif past_key_value is not None: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | |
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | |
else: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
use_cache = past_key_value is not None | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_layer, value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
query_length, key_length = query_layer.shape[2], key_layer.shape[2] | |
if use_cache: | |
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( | |
-1, 1 | |
) | |
else: | |
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | |
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | |
distance = position_ids_l - position_ids_r | |
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | |
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility | |
if self.position_embedding_type == "relative_key": | |
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores | |
elif self.position_embedding_type == "relative_key_query": | |
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in BridgeTowerModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
if self.is_decoder: | |
outputs = outputs + (past_key_value,) | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BridgeTower | |
class BridgeTowerAttention(nn.Module): | |
def __init__(self, config, position_embedding_type=None): | |
super().__init__() | |
self.self = BridgeTowerSelfAttention(config, position_embedding_type=position_embedding_type) | |
self.output = BridgeTowerSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
self_outputs = self.self( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class BridgeTowerBertCrossLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = BridgeTowerAttention(config) | |
self.is_decoder = config.is_decoder | |
self.add_cross_attention = config.add_cross_attention | |
self.crossattention = BridgeTowerAttention(config) | |
self.intermediate = BridgeTowerIntermediate(config) | |
self.output = BridgeTowerOutput(config) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_attention_mask=None, | |
past_key_value=None, | |
output_attentions=False, | |
): | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask=attention_mask, | |
head_mask=None, | |
output_attentions=output_attentions, | |
past_key_value=None, | |
) | |
attention_output = self_attention_outputs[0] | |
# if decoder, the last output is tuple of self-attn cache | |
# add self attentions if we output attention weights | |
outputs = self_attention_outputs[1:] | |
cross_attention_outputs = self.crossattention( | |
attention_output, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
) | |
attention_output = cross_attention_outputs[0] | |
# add cross attentions if we output attention weights | |
outputs = outputs + cross_attention_outputs[1:-1] | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class BridgeTowerTextLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = BridgeTowerAttention(config) | |
self.is_decoder = config.is_decoder | |
self.add_cross_attention = config.add_cross_attention | |
if self.add_cross_attention: | |
if not self.is_decoder: | |
raise ValueError(f"{self} should be used as a decoder model if cross attention is added") | |
self.crossattention = BridgeTowerAttention(config, position_embedding_type="absolute") | |
self.intermediate = BridgeTowerIntermediate(config) | |
self.output = BridgeTowerOutput(config) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
past_key_value=self_attn_past_key_value, | |
) | |
attention_output = self_attention_outputs[0] | |
# if decoder, the last output is tuple of self-attn cache | |
if self.is_decoder: | |
outputs = self_attention_outputs[1:-1] | |
present_key_value = self_attention_outputs[-1] | |
else: | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
cross_attn_present_key_value = None | |
if self.is_decoder and encoder_hidden_states is not None: | |
if not hasattr(self, "crossattention"): | |
raise ValueError( | |
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" | |
" by setting `config.add_cross_attention=True`" | |
) | |
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
cross_attention_outputs = self.crossattention( | |
attention_output, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
cross_attn_past_key_value, | |
output_attentions, | |
) | |
attention_output = cross_attention_outputs[0] | |
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights | |
# add cross-attn cache to positions 3,4 of present_key_value tuple | |
cross_attn_present_key_value = cross_attention_outputs[-1] | |
present_key_value = present_key_value + cross_attn_present_key_value | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
# if decoder, return the attn key/values as the last output | |
if self.is_decoder: | |
outputs = outputs + (present_key_value,) | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->BridgeTowerText | |
class BridgeTowerTextEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([BridgeTowerTextLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
next_decoder_cache = () if use_cache else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
past_key_value = past_key_values[i] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, past_key_value, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[-1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if self.config.add_cross_attention: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
next_decoder_cache, | |
all_hidden_states, | |
all_self_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_decoder_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->BridgeTowerText | |
class BridgeTowerTextEmbeddings(nn.Module): | |
""" | |
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. | |
""" | |
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
) | |
self.register_buffer( | |
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False | |
) | |
# End copy | |
self.padding_idx = config.pad_token_id | |
self.position_embeddings = nn.Embedding( | |
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx | |
) | |
def forward( | |
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 | |
): | |
if position_ids is None: | |
if input_ids is not None: | |
# Create the position ids from the input token ids. Any padded tokens remain padded. | |
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) | |
else: | |
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs | |
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves | |
# issue #5664 | |
if token_type_ids is None: | |
if hasattr(self, "token_type_ids"): | |
buffered_token_type_ids = self.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
def create_position_ids_from_inputs_embeds(self, inputs_embeds): | |
""" | |
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
Args: | |
inputs_embeds: torch.Tensor | |
Returns: torch.Tensor | |
""" | |
input_shape = inputs_embeds.size()[:-1] | |
sequence_length = input_shape[1] | |
position_ids = torch.arange( | |
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
) | |
return position_ids.unsqueeze(0).expand(input_shape) | |
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids | |
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): | |
""" | |
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | |
are ignored. This is modified from fairseq's `utils.make_positions`. | |
Args: | |
x: torch.Tensor x: | |
Returns: torch.Tensor | |
""" | |
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
mask = input_ids.ne(padding_idx).int() | |
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask | |
return incremental_indices.long() + padding_idx | |
class BridgeTowerPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = BridgeTowerConfig | |
base_model_prefix = "bridgetower" | |
supports_gradient_checkpointing = False | |
_no_split_modules = ["BridgeTowerSelfAttention", "BridgeTowerResidualAttention"] | |
_skip_keys_device_placement = "past_key_values" | |
def _init_weights(self, module): | |
if isinstance(module, BridgeTowerVisionModel): | |
proj_std = (module.visual.transformer.hidden_size**-0.5) * ( | |
(2 * module.visual.transformer.num_hidden_layers) ** -0.5 | |
) | |
attn_std = module.visual.transformer.hidden_size**-0.5 | |
fc_std = (2 * module.visual.transformer.hidden_size) ** -0.5 | |
for block in module.visual.transformer.resblocks: | |
nn.init.normal_(block.attn.in_proj_weight, std=attn_std * self.config.initializer_factor) | |
nn.init.normal_(block.attn.out_proj.weight, std=proj_std * self.config.initializer_factor) | |
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std * self.config.initializer_factor) | |
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std * self.config.initializer_factor) | |
nn.init.normal_(module.visual.embeddings.class_embedding, std=attn_std * self.config.initializer_factor) | |
nn.init.normal_( | |
module.visual.embeddings.position_embedding.weight, std=attn_std * self.config.initializer_factor | |
) | |
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Embedding)): | |
module.weight.data.normal_(mean=0.0, std=0.05 * self.config.initializer_factor) | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
class BridgeTowerVisionModel(BridgeTowerPreTrainedModel): | |
config_class = BridgeTowerVisionConfig | |
def __init__(self, config): | |
super().__init__(config) | |
self.visual = BridgeTowerVisionTransformer(config) | |
def dtype(self): | |
return self.visual.embeddings.patch_embedding.weight.dtype | |
def forward(self, image, image_mask=None): | |
return self.visual(image.type(self.dtype), image_mask) | |
class BridgeTowerTextModel(BridgeTowerPreTrainedModel): | |
""" | |
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of | |
cross-attention is added between the self-attention layers, following the architecture described in *Attention is | |
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz | |
Kaiser and Illia Polosukhin. | |
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set | |
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and | |
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. | |
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 | |
""" | |
config_class = BridgeTowerTextConfig | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = BridgeTowerTextEmbeddings(config) | |
self.encoder = BridgeTowerTextEncoder(config) | |
self.pooler = BridgeTowerPooler(config) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaModel.forward | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: | |
r""" | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if self.config.is_decoder: | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
else: | |
use_cache = False | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
# past_key_values_length | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) | |
if token_type_ids is None: | |
if hasattr(self.embeddings, "token_type_ids"): | |
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.config.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
past_key_values_length=past_key_values_length, | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPoolingAndCrossAttentions( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
past_key_values=encoder_outputs.past_key_values, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
cross_attentions=encoder_outputs.cross_attentions, | |
) | |
class BridgeTowerModel(BridgeTowerPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
vision_config = config.vision_config | |
text_config = config.text_config | |
if config.share_cross_modal_transformer_layers: | |
self.cross_modal_text_transform = nn.Linear(text_config.hidden_size, config.hidden_size) | |
self.cross_modal_image_transform = nn.Linear(vision_config.hidden_size, config.hidden_size) | |
else: | |
self.cross_modal_text_transform = nn.ModuleList( | |
[nn.Linear(text_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)] | |
) | |
self.cross_modal_image_transform = nn.ModuleList( | |
[nn.Linear(vision_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)] | |
) | |
self.token_type_embeddings = nn.Embedding(2, config.hidden_size) | |
self.vision_model = BridgeTowerVisionModel(vision_config) | |
self.text_model = BridgeTowerTextModel(text_config) | |
if not vision_config.share_layernorm and config.init_layernorm_from_vision_encoder: | |
for ln in self.vision_model.visual.cross_modal_ln_separate: | |
ln.weight.data = self.vision_model.visual.ln_post.weight.data | |
ln.bias.data = self.vision_model.visual.ln_post.bias.data | |
self.cross_modal_image_layers = nn.ModuleList( | |
[BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)] | |
) | |
self.cross_modal_text_layers = nn.ModuleList( | |
[BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)] | |
) | |
# Class token => Linear => Tanh | |
self.cross_modal_image_pooler = BridgeTowerPooler(config) | |
self.cross_modal_text_pooler = BridgeTowerPooler(config) | |
# Initialize BridgeTower Components | |
self.cross_modal_text_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.cross_modal_image_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
if config.share_link_tower_layers: | |
self.cross_modal_text_link_tower = BridgeTowerLinkTower(config) | |
self.cross_modal_image_link_tower = BridgeTowerLinkTower(config) | |
else: | |
self.cross_modal_text_link_tower = nn.ModuleList( | |
[BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)] | |
) | |
self.cross_modal_image_link_tower = nn.ModuleList( | |
[BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)] | |
) | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.text_model.get_input_embeddings() | |
def set_input_embeddings(self, value): | |
self.text_model.set_input_embeddings(value) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
pixel_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
image_embeds: Optional[torch.FloatTensor] = None, | |
image_token_type_idx: Optional[int] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple[torch.Tensor], BridgeTowerModelOutput]: | |
r""" | |
output_hidden_states (`bool`, *optional*): | |
If set to `True`, hidden states are returned as a list containing the hidden states of text, image, and | |
cross-modal components respectively. i.e. `(hidden_states_text, hidden_states_image, | |
hidden_states_cross_modal)` where each element is a list of the hidden states of the corresponding | |
modality. `hidden_states_txt/img` are a list of tensors corresponding to unimodal hidden states and | |
`hidden_states_cross_modal` is a list of tuples containing `cross_modal_text_hidden_states` and | |
`cross_modal_image_hidden_states` of each brdige layer. | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels are currently not supported. | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import BridgeTowerProcessor, BridgeTowerModel | |
>>> from PIL import Image | |
>>> import requests | |
>>> # prepare image and text | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> text = "hello world" | |
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base") | |
>>> model = BridgeTowerModel.from_pretrained("BridgeTower/bridgetower-base") | |
>>> inputs = processor(image, text, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> outputs.keys() | |
odict_keys(['text_features', 'image_features', 'pooler_output']) | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
all_hidden_states_text = () if output_hidden_states else None | |
all_hidden_states_image = () if output_hidden_states else None | |
all_hidden_states_cross = () if output_hidden_states else None | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
image_token_type_idx = image_token_type_idx if image_token_type_idx else 1 | |
input_shape = input_ids.size() | |
text_embeds = self.text_model.embeddings(input_ids=input_ids) | |
if output_hidden_states: | |
all_hidden_states_text += (text_embeds,) | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, dtype=torch.long, device=input_ids.device) | |
extend_text_masks = self.text_model.get_extended_attention_mask(attention_mask, input_shape).to( | |
input_ids.device | |
) | |
# The split_index determines how many layers of the uni-modal encoder are applied before the cross-modal encoder | |
split_index = len(self.text_model.encoder.layer) - self.config.num_hidden_layers + 1 | |
# Run the first 'split_index' layers of the textual encoder | |
for layer in self.text_model.encoder.layer[:split_index]: | |
text_embeds = layer(text_embeds, extend_text_masks)[0] | |
if output_hidden_states: | |
all_hidden_states_text += (text_embeds,) | |
if image_embeds is None: | |
image_embeds = self.vision_model.visual.forward_pre(pixel_values.type(self.vision_model.dtype)) | |
else: | |
# Permute as BridgeTowerResidualAttention has batch_first=True | |
image_embeds = image_embeds.permute(1, 0, 2) | |
if output_hidden_states: | |
all_hidden_states_image += (image_embeds,) | |
# Run the first 'split_index' layers of the visual encoder | |
for block in self.vision_model.visual.transformer.resblocks[:split_index]: | |
image_embeds = block(image_embeds) | |
if output_hidden_states: | |
all_hidden_states_image += (image_embeds,) | |
image_embeds_with_ln = self.vision_model.visual.forward_post(image_embeds.type(self.vision_model.dtype)) | |
# first layer is a special case because we don't have the output from the cross-encoder yet | |
cross_modal_text = self.cross_modal_text_transform(text_embeds) | |
text_token_type_embeddings = self.token_type_embeddings( | |
torch.zeros(1, dtype=torch.long, device=input_ids.device) | |
).expand_as(cross_modal_text) | |
cross_modal_text = self.cross_modal_text_layernorm(cross_modal_text + text_token_type_embeddings) | |
image_embeds_with_ln = self.cross_modal_image_transform(image_embeds_with_ln) | |
image_token_type_embeddings = self.token_type_embeddings( | |
torch.full((1,), image_token_type_idx, dtype=torch.long, device=input_ids.device) | |
).expand_as(image_embeds_with_ln) | |
image_embeds_with_ln = image_embeds_with_ln + image_token_type_embeddings | |
cross_modal_image = self.cross_modal_image_layernorm(image_embeds_with_ln) | |
pixel_mask = torch.ones( | |
(cross_modal_image.size(0), cross_modal_image.size(1)), | |
dtype=torch.long, | |
device=input_ids.device, | |
) | |
extend_image_masks = self.text_model.get_extended_attention_mask(pixel_mask, pixel_mask.size()).to( | |
input_ids.device | |
) | |
layer_outputs_text = self.cross_modal_text_layers[0]( | |
cross_modal_text, | |
cross_modal_image, | |
attention_mask=extend_text_masks, | |
encoder_attention_mask=extend_image_masks, | |
output_attentions=output_attentions, | |
) | |
cross_text_features = layer_outputs_text[0] | |
layer_outputs_image = self.cross_modal_image_layers[0]( | |
cross_modal_image, | |
cross_modal_text, | |
attention_mask=extend_image_masks, | |
encoder_attention_mask=extend_text_masks, | |
output_attentions=output_attentions, | |
) | |
cross_image_features = layer_outputs_image[0] | |
if output_hidden_states: | |
all_hidden_states_cross += ((cross_text_features, cross_image_features),) | |
if output_attentions: | |
all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),) | |
link_layer_index = 0 | |
# Each of the top 6 layers of the visual and textual encoders ([split_index:]) is connected to each layer of | |
# the cross-modal encoder via bridge layers, which brings bottom-up alignment and fusion to the cross-modal encoder. | |
for i in range(split_index, len(self.text_model.encoder.layer)): | |
text_embeds = self.text_model.encoder.layer[i](text_embeds, extend_text_masks)[0] | |
image_embeds = self.vision_model.visual.transformer.resblocks[i](image_embeds).type( | |
self.vision_model.dtype | |
) | |
image_embeds_with_ln = ( | |
self.cross_modal_image_transform(self.vision_model.visual.forward_post(image_embeds)) | |
+ image_token_type_embeddings | |
) | |
text_link_tower = self.cross_modal_text_link_tower[link_layer_index] | |
image_link_tower = self.cross_modal_image_link_tower[link_layer_index] | |
# Bridge layers for textual and visual encoders | |
cross_text_features_ = text_link_tower( | |
self.cross_modal_text_transform(text_embeds) + text_token_type_embeddings, | |
cross_text_features, | |
extend_text_masks, | |
) | |
cross_image_features_ = image_link_tower(image_embeds_with_ln, cross_image_features, extend_image_masks) | |
# Cross-modal encoder via bridge layers of textual and visual encoders | |
layer_outputs_text = self.cross_modal_text_layers[link_layer_index + 1]( | |
cross_text_features_, | |
cross_image_features_, | |
attention_mask=extend_text_masks, | |
encoder_attention_mask=extend_image_masks, | |
output_attentions=output_attentions, | |
) | |
cross_text_features = layer_outputs_text[0] | |
layer_outputs_image = self.cross_modal_image_layers[link_layer_index + 1]( | |
cross_image_features_, | |
cross_text_features_, | |
attention_mask=extend_image_masks, | |
encoder_attention_mask=extend_text_masks, | |
output_attentions=output_attentions, | |
) | |
cross_image_features = layer_outputs_image[0] | |
link_layer_index += 1 | |
if output_hidden_states: | |
all_hidden_states_text += (text_embeds,) | |
all_hidden_states_image += (image_embeds,) | |
all_hidden_states_cross += ((cross_text_features, cross_image_features),) | |
if output_attentions: | |
all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),) | |
# Concatenate the cls token of the text and image features to get the final represtation | |
text_features, image_features = cross_text_features, cross_image_features | |
cls_features = self.get_cls_features(text_features, image_features) | |
if output_hidden_states: | |
all_hidden_states = (all_hidden_states_text, all_hidden_states_image, all_hidden_states_cross) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [text_features, image_features, cls_features, all_hidden_states, all_self_attentions] | |
if v is not None | |
) | |
return BridgeTowerModelOutput( | |
text_features=text_features, | |
image_features=image_features, | |
pooler_output=cls_features, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
def get_cls_features(self, text_features, image_features): | |
cls_features_text = self.cross_modal_text_pooler(text_features) | |
cls_features_image = self.cross_modal_image_pooler(image_features) | |
return torch.cat([cls_features_text, cls_features_image], dim=-1) | |
# Copied from transformers.models.vilt.modeling_vilt.ViltPredictionHeadTransform with Vilt->BridgeTower | |
class BridgeTowerPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class BridgeTowerMLMHead(nn.Module): | |
def __init__(self, config, weight=None): | |
super().__init__() | |
self.config = config | |
self.transform = BridgeTowerPredictionHeadTransform(config) | |
self.decoder = nn.Linear(config.hidden_size, config.text_config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.text_config.vocab_size)) | |
if weight is not None: | |
self.decoder.weight = weight | |
def forward(self, x): | |
mlm_score = self.transform(x) | |
mlm_score = self.decoder(mlm_score) + self.bias | |
return mlm_score | |
class BridgeTowerITMHead(nn.Module): | |
def __init__(self, hidden_size): | |
super().__init__() | |
self.fc = nn.Linear(hidden_size, 2) | |
def forward(self, x): | |
itm_score = self.fc(x) | |
return itm_score | |
class BridgeTowerForMaskedLM(BridgeTowerPreTrainedModel): | |
_tied_weights_keys = ["mlm_score.decoder.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.bridgetower = BridgeTowerModel(config) | |
self.mlm_score = BridgeTowerMLMHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.mlm_score.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.mlm_score.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
pixel_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
image_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.LongTensor] = None, | |
) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = "http://images.cocodataset.org/val2017/000000360943.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") | |
>>> text = "a <mask> looking out of the window" | |
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") | |
>>> model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") | |
>>> # prepare inputs | |
>>> encoding = processor(image, text, return_tensors="pt") | |
>>> # forward pass | |
>>> outputs = model(**encoding) | |
>>> results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist()) | |
>>> print(results) | |
.a cat looking out of the window. | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bridgetower( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
pixel_values=pixel_values, | |
pixel_mask=pixel_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
image_embeds=image_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
mlm_logits = self.mlm_score(outputs.text_features if return_dict else outputs[0]) | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() # -100 index = padding token | |
labels = labels.to(mlm_logits.device) | |
masked_lm_loss = loss_fct(mlm_logits.view(-1, self.config.text_config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = tuple(mlm_logits) | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return MaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=mlm_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BridgeTowerForImageAndTextRetrieval(BridgeTowerPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bridgetower = BridgeTowerModel(config) | |
self.itm_score = BridgeTowerITMHead(config.hidden_size * 2) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
pixel_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
image_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.LongTensor] = None, | |
) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*): | |
Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match. | |
The pairs with 0 will be skipped for calculation. | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval | |
>>> import requests | |
>>> from PIL import Image | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] | |
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") | |
>>> model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") | |
>>> # forward pass | |
>>> scores = dict() | |
>>> for text in texts: | |
... # prepare inputs | |
... encoding = processor(image, text, return_tensors="pt") | |
... outputs = model(**encoding) | |
... scores[text] = outputs.logits[0, 1].item() | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bridgetower( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
pixel_values=pixel_values, | |
pixel_mask=pixel_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
image_embeds=image_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooler_output = outputs.pooler_output if return_dict else outputs[2] | |
logits = self.itm_score(pooler_output) | |
itm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
labels = labels.to(logits.device) | |
itm_loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = tuple(logits) | |
return ((itm_loss,) + output) if itm_loss is not None else output | |
return SequenceClassifierOutput( | |
loss=itm_loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BridgeTowerContrastiveHead(nn.Module): | |
def __init__(self, hidden_size, embed_size): | |
super().__init__() | |
self.fc = nn.Linear(hidden_size, embed_size) | |
def forward(self, x): | |
x = self.fc(x) | |
return x | |
class BridgeTowerForContrastiveLearning(BridgeTowerPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bridgetower = BridgeTowerModel(config) | |
self.itc_text_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size) | |
self.itc_image_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size) | |
self.itc_cross_modal_head = BridgeTowerContrastiveHead(config.hidden_size * 2, config.contrastive_hidden_size) | |
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
pixel_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
image_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = True, | |
return_dict: Optional[bool] = None, | |
return_loss: Optional[bool] = None, | |
) -> Union[BridgeTowerContrastiveOutput, Tuple[torch.FloatTensor]]: | |
r""" | |
return_loss (`bool`, *optional*): | |
Whether or not to return the contrastive loss. | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import BridgeTowerProcessor, BridgeTowerForContrastiveLearning | |
>>> import requests | |
>>> from PIL import Image | |
>>> import torch | |
>>> image_urls = [ | |
... "https://farm4.staticflickr.com/3395/3428278415_81c3e27f15_z.jpg", | |
... "http://images.cocodataset.org/val2017/000000039769.jpg", | |
... ] | |
>>> texts = ["two dogs in a car", "two cats sleeping on a couch"] | |
>>> images = [Image.open(requests.get(url, stream=True).raw) for url in image_urls] | |
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") | |
>>> model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") | |
>>> inputs = processor(images, texts, padding=True, return_tensors="pt") | |
>>> loss = model(**inputs, return_loss=True).loss | |
>>> inputs = processor(images, texts[::-1], padding=True, return_tensors="pt") | |
>>> loss_swapped = model(**inputs, return_loss=True).loss | |
>>> print("Loss", round(loss.item(), 4)) | |
Loss 0.0019 | |
>>> print("Loss with swapped images", round(loss_swapped.item(), 4)) | |
Loss with swapped images 2.126 | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bridgetower( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
pixel_values=pixel_values, | |
pixel_mask=pixel_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
image_embeds=image_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=True, | |
return_dict=return_dict, | |
) | |
pooler_output = outputs.pooler_output if return_dict else outputs[2] | |
hidden_states_txt, hidden_states_img, hidden_states_cross_modal = ( | |
outputs.hidden_states if return_dict else outputs[3] | |
) | |
text_embeds = hidden_states_txt[-1] | |
image_embeds = hidden_states_img[-1] | |
image_embeds_with_ln = self.bridgetower.vision_model.visual.forward_post(image_embeds) | |
image_token_type_embeddings = self.bridgetower.token_type_embeddings( | |
torch.full((1,), 1, dtype=torch.long, device=self.bridgetower.token_type_embeddings.weight.device) | |
).expand_as(image_embeds_with_ln) | |
image_embeds = self.bridgetower.cross_modal_image_transform(image_embeds_with_ln) + image_token_type_embeddings | |
# normalized features | |
text_embeds = nn.functional.normalize(self.itc_text_head(text_embeds[:, 0, :]), dim=-1, p=2) | |
image_embeds = nn.functional.normalize(self.itc_image_head(image_embeds[:, 0, :]), dim=-1, p=2).to( | |
device=text_embeds.device | |
) | |
cross_embeds = nn.functional.normalize(self.itc_cross_modal_head(pooler_output), dim=-1, p=2).to( | |
device=text_embeds.device | |
) | |
logits = torch.stack([text_embeds, image_embeds, cross_embeds], dim=-2) | |
logit_scale = self.logit_scale.exp().to(device=text_embeds.device) | |
logits_text_to_image = torch.matmul(text_embeds, image_embeds.t()) * logit_scale | |
logits_text_to_cross = torch.matmul(text_embeds, cross_embeds.t()) * logit_scale | |
logits_image_to_cross = torch.matmul(image_embeds, cross_embeds.t()) * logit_scale | |
itc_loss = None | |
if return_loss: | |
labels = torch.arange(len(logits), device=logits.device) | |
text_to_image_loss = nn.functional.cross_entropy(logits_text_to_image, labels) | |
text_to_cross_loss = nn.functional.cross_entropy(logits_text_to_cross, labels) | |
image_to_cross_loss = nn.functional.cross_entropy(logits_image_to_cross, labels) | |
itc_loss = (text_to_image_loss + text_to_cross_loss + image_to_cross_loss) / 3.0 | |
if not return_dict: | |
output = (logits, text_embeds, image_embeds, cross_embeds) + outputs[3:] | |
return ((itc_loss,) + output) if itc_loss is not None else output | |
return BridgeTowerContrastiveOutput( | |
loss=itc_loss, | |
logits=logits, | |
text_embeds=text_embeds, | |
image_embeds=image_embeds, | |
cross_embeds=cross_embeds, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |