Spaces:
Running
on
T4
Running
on
T4
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import torch | |
from ..models.clipseg import CLIPSegForImageSegmentation | |
from ..utils import is_vision_available, requires_backends | |
from .base import PipelineTool | |
if is_vision_available(): | |
from PIL import Image | |
class ImageSegmentationTool(PipelineTool): | |
description = ( | |
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." | |
"It takes two arguments named `image` which should be the original image, and `label` which should be a text " | |
"describing the elements what should be identified in the segmentation mask. The tool returns the mask." | |
) | |
default_checkpoint = "CIDAS/clipseg-rd64-refined" | |
name = "image_segmenter" | |
model_class = CLIPSegForImageSegmentation | |
inputs = ["image", "text"] | |
outputs = ["image"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["vision"]) | |
super().__init__(*args, **kwargs) | |
def encode(self, image: "Image", label: str): | |
return self.pre_processor(text=[label], images=[image], padding=True, return_tensors="pt") | |
def forward(self, inputs): | |
with torch.no_grad(): | |
logits = self.model(**inputs).logits | |
return logits | |
def decode(self, outputs): | |
array = outputs.cpu().detach().numpy() | |
array[array <= 0] = 0 | |
array[array > 0] = 1 | |
return Image.fromarray((array * 255).astype(np.uint8)) | |