|
import gradio as gr |
|
import json |
|
import argparse |
|
import os |
|
import copy |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision |
|
from PIL import Image, ImageDraw, ImageFont |
|
import openai |
|
|
|
import GroundingDINO.groundingdino.datasets.transforms as T |
|
from GroundingDINO.groundingdino.models import build_model |
|
from GroundingDINO.groundingdino.util import box_ops |
|
from GroundingDINO.groundingdino.util.slconfig import SLConfig |
|
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
|
from segment_anything import build_sam, SamPredictor |
|
from segment_anything.utils.amg import remove_small_regions |
|
import cv2 |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
import PIL |
|
import requests |
|
import torch |
|
from io import BytesIO |
|
from huggingface_hub import hf_hub_download |
|
from sys import platform |
|
|
|
|
|
if platform == 'darwin': |
|
import matplotlib |
|
matplotlib.use('agg') |
|
|
|
def load_model_hf(model_config_path, repo_id, filename, device='cpu'): |
|
args = SLConfig.fromfile(model_config_path) |
|
model = build_model(args) |
|
args.device = device |
|
|
|
cache_file = hf_hub_download(repo_id=repo_id, filename=filename) |
|
checkpoint = torch.load(cache_file, map_location='cpu') |
|
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) |
|
print("Model loaded from {} \n => {}".format(cache_file, log)) |
|
_ = model.eval() |
|
return model |
|
|
|
def plot_boxes_to_image(image_pil, tgt): |
|
H, W = tgt["size"] |
|
boxes = tgt["boxes"] |
|
labels = tgt["labels"] |
|
assert len(boxes) == len(labels), "boxes and labels must have same length" |
|
|
|
draw = ImageDraw.Draw(image_pil) |
|
mask = Image.new("L", image_pil.size, 0) |
|
mask_draw = ImageDraw.Draw(mask) |
|
|
|
|
|
for box, label in zip(boxes, labels): |
|
|
|
box = box * torch.Tensor([W, H, W, H]) |
|
|
|
box[:2] -= box[2:] / 2 |
|
box[2:] += box[:2] |
|
|
|
color = tuple(np.random.randint(0, 255, size=3).tolist()) |
|
|
|
x0, y0, x1, y1 = box |
|
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) |
|
|
|
draw.rectangle([x0, y0, x1, y1], outline=color, width=6) |
|
|
|
|
|
font = ImageFont.load_default() |
|
if hasattr(font, "getbbox"): |
|
bbox = draw.textbbox((x0, y0), str(label), font) |
|
else: |
|
w, h = draw.textsize(str(label), font) |
|
bbox = (x0, y0, w + x0, y0 + h) |
|
|
|
draw.rectangle(bbox, fill=color) |
|
draw.text((x0, y0), str(label), fill="white") |
|
|
|
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6) |
|
|
|
return image_pil, mask |
|
|
|
def load_image(image_path): |
|
|
|
|
|
image_pil = image_path |
|
|
|
transform = T.Compose( |
|
[ |
|
T.RandomResize([800], max_size=1333), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
image, _ = transform(image_pil, None) |
|
return image_pil, image |
|
|
|
|
|
def load_model(model_config_path, model_checkpoint_path, device): |
|
args = SLConfig.fromfile(model_config_path) |
|
args.device = device |
|
model = build_model(args) |
|
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") |
|
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) |
|
_ = model.eval() |
|
return model |
|
|
|
|
|
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"): |
|
caption = caption.lower() |
|
caption = caption.strip() |
|
if not caption.endswith("."): |
|
caption = caption + "." |
|
model = model.to(device) |
|
image = image.to(device) |
|
with torch.no_grad(): |
|
outputs = model(image[None], captions=[caption]) |
|
logits = outputs["pred_logits"].cpu().sigmoid()[0] |
|
boxes = outputs["pred_boxes"].cpu()[0] |
|
logits.shape[0] |
|
|
|
|
|
logits_filt = logits.clone() |
|
boxes_filt = boxes.clone() |
|
filt_mask = logits_filt.max(dim=1)[0] > box_threshold |
|
logits_filt = logits_filt[filt_mask] |
|
boxes_filt = boxes_filt[filt_mask] |
|
logits_filt.shape[0] |
|
|
|
|
|
tokenlizer = model.tokenizer |
|
tokenized = tokenlizer(caption) |
|
|
|
pred_phrases = [] |
|
scores = [] |
|
for logit, box in zip(logits_filt, boxes_filt): |
|
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) |
|
if with_logits: |
|
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") |
|
else: |
|
pred_phrases.append(pred_phrase) |
|
scores.append(logit.max().item()) |
|
|
|
return boxes_filt, torch.Tensor(scores), pred_phrases |
|
|
|
def show_mask(mask, ax, random_color=False): |
|
if random_color: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
else: |
|
color = np.array([30/255, 144/255, 255/255, 0.6]) |
|
h, w = mask.shape[-2:] |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
ax.imshow(mask_image) |
|
|
|
def save_mask_data(output_dir, mask_list, box_list, label_list): |
|
value = 0 |
|
|
|
mask_img = torch.zeros(mask_list.shape[-2:]) |
|
for idx, mask in enumerate(mask_list): |
|
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1 |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(mask_img.numpy()) |
|
plt.axis('off') |
|
mask_img_path = os.path.join(output_dir, 'mask.jpg') |
|
plt.savefig(mask_img_path, bbox_inches="tight", dpi=300, pad_inches=0.0) |
|
|
|
json_data = [{ |
|
'value': value, |
|
'label': 'background' |
|
}] |
|
for label, box in zip(label_list, box_list): |
|
value += 1 |
|
name, logit = label.split('(') |
|
logit = logit[:-1] |
|
json_data.append({ |
|
'value': value, |
|
'label': name, |
|
'logit': float(logit), |
|
'box': box.numpy().tolist(), |
|
}) |
|
|
|
mask_json_path = os.path.join(output_dir, 'mask.json') |
|
with open(mask_json_path, 'w') as f: |
|
json.dump(json_data, f) |
|
|
|
return mask_img_path, mask_json_path |
|
|
|
def show_box(box, ax, label): |
|
x0, y0 = box[0], box[1] |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) |
|
ax.text(x0, y0, label) |
|
|
|
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py' |
|
ckpt_repo_id = "ShilongLiu/GroundingDINO" |
|
ckpt_filenmae = "groundingdino_swint_ogc.pth" |
|
sam_checkpoint='sam_vit_h_4b8939.pth' |
|
output_dir="outputs" |
|
device="cpu" |
|
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") |
|
|
|
def generate_caption(raw_image): |
|
|
|
inputs = processor(raw_image, return_tensors="pt") |
|
out = blip_model.generate(**inputs) |
|
caption = processor.decode(out[0], skip_special_tokens=True) |
|
return caption |
|
|
|
|
|
def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo", openai_key=''): |
|
openai.api_key = openai_key |
|
prompt = [ |
|
{ |
|
'role': 'system', |
|
'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \ |
|
f'List the nouns in singular form. Split them by "{split} ". ' + \ |
|
f'Caption: {caption}.' |
|
} |
|
] |
|
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens) |
|
reply = response['choices'][0]['message']['content'] |
|
|
|
tags = reply.split(':')[-1].strip() |
|
return tags |
|
|
|
def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"): |
|
object_list = [obj.split('(')[0] for obj in pred_phrases] |
|
object_num = [] |
|
for obj in set(object_list): |
|
object_num.append(f'{object_list.count(obj)} {obj}') |
|
object_num = ', '.join(object_num) |
|
print(f"Correct object number: {object_num}") |
|
|
|
prompt = [ |
|
{ |
|
'role': 'system', |
|
'content': 'Revise the number in the caption if it is wrong. ' + \ |
|
f'Caption: {caption}. ' + \ |
|
f'True object number: {object_num}. ' + \ |
|
'Only give the revised caption: ' |
|
} |
|
] |
|
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens) |
|
reply = response['choices'][0]['message']['content'] |
|
|
|
caption = reply.split(':')[-1].strip() |
|
return caption |
|
|
|
def run_grounded_sam(image_path, openai_key, box_threshold, text_threshold, iou_threshold, area_threshold): |
|
assert openai_key, 'Openai key is not found!' |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
image_pil, image = load_image(image_path.convert("RGB")) |
|
|
|
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae) |
|
|
|
|
|
image_pil.save(os.path.join(output_dir, "raw_image.jpg")) |
|
|
|
caption = generate_caption(image_pil) |
|
|
|
|
|
split = ',' |
|
tags = generate_tags(caption, split=split, openai_key=openai_key) |
|
|
|
|
|
boxes_filt, scores, pred_phrases = get_grounding_output( |
|
model, image, tags, box_threshold, text_threshold, device=device |
|
) |
|
|
|
size = image_pil.size |
|
|
|
|
|
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint)) |
|
image = np.array(image_path) |
|
predictor.set_image(image) |
|
|
|
H, W = size[1], size[0] |
|
for i in range(boxes_filt.size(0)): |
|
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) |
|
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 |
|
boxes_filt[i][2:] += boxes_filt[i][:2] |
|
|
|
boxes_filt = boxes_filt.cpu() |
|
|
|
print(f"Before NMS: {boxes_filt.shape[0]} boxes") |
|
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist() |
|
boxes_filt = boxes_filt[nms_idx] |
|
pred_phrases = [pred_phrases[idx] for idx in nms_idx] |
|
print(f"After NMS: {boxes_filt.shape[0]} boxes") |
|
caption = check_caption(caption, pred_phrases) |
|
print(f"Revise caption with number: {caption}") |
|
|
|
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]) |
|
|
|
masks, _, _ = predictor.predict_torch( |
|
point_coords = None, |
|
point_labels = None, |
|
boxes = transformed_boxes, |
|
multimask_output = False, |
|
) |
|
|
|
new_masks = [] |
|
for mask in masks: |
|
|
|
mask = mask.cpu().numpy().squeeze() |
|
mask, _ = remove_small_regions(mask, area_threshold, mode="holes") |
|
mask, _ = remove_small_regions(mask, area_threshold, mode="islands") |
|
new_masks.append(torch.as_tensor(mask).unsqueeze(0)) |
|
|
|
masks = torch.stack(new_masks, dim=0) |
|
|
|
assert sam_checkpoint, 'sam_checkpoint is not found!' |
|
|
|
|
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image) |
|
for mask in masks: |
|
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) |
|
for box, label in zip(boxes_filt, pred_phrases): |
|
show_box(box.numpy(), plt.gca(), label) |
|
plt.axis('off') |
|
image_path = os.path.join(output_dir, "grounding_dino_output.jpg") |
|
plt.savefig(image_path, bbox_inches="tight") |
|
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) |
|
|
|
mask_img_path, _ = save_mask_data('./outputs', masks, boxes_filt, pred_phrases) |
|
|
|
mask_img = cv2.cvtColor(cv2.imread(mask_img_path), cv2.COLOR_BGR2RGB) |
|
|
|
return image_result, mask_img, caption, tags |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True) |
|
parser.add_argument("--debug", action="store_true", help="using debug mode") |
|
parser.add_argument("--share", action="store_true", help="share the app") |
|
args = parser.parse_args() |
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(source='upload', type="pil") |
|
openai_key = gr.Textbox(label="OpenAI key") |
|
|
|
run_button = gr.Button(label="Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
box_threshold = gr.Slider( |
|
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001 |
|
) |
|
text_threshold = gr.Slider( |
|
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 |
|
) |
|
iou_threshold = gr.Slider( |
|
label="IoU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.001 |
|
) |
|
area_threshold = gr.Slider( |
|
label="Area Threshold", minimum=0.0, maximum=2500, value=100, step=10 |
|
) |
|
|
|
with gr.Column(): |
|
image_caption = gr.Textbox(label="Image Caption") |
|
identified_labels = gr.Textbox(label="Key objects extracted by ChatGPT") |
|
gallery = gr.outputs.Image( |
|
type="pil", |
|
).style(full_width=True, full_height=True) |
|
|
|
mask_gallary = gr.outputs.Image( |
|
type="pil", |
|
).style(full_width=True, full_height=True) |
|
|
|
|
|
run_button.click(fn=run_grounded_sam, inputs=[ |
|
input_image, openai_key, box_threshold, text_threshold, iou_threshold, area_threshold], |
|
outputs=[gallery, mask_gallary, image_caption, identified_labels]) |
|
|
|
|
|
block.launch(server_name='0.0.0.0', server_port=7589, debug=args.debug, share=args.share) |