Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" CPMAnt model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/config.json" | |
# See all CPMAnt models at https://huggingface.co/models?filter=cpmant | |
} | |
class CpmAntConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`CpmAntModel`]. It is used to instantiate an | |
CPMAnt model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the CPMAnt | |
[openbmb/cpm-ant-10b](https://huggingface.co/openbmb/cpm-ant-10b) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30720): | |
Vocabulary size of the CPMAnt model. Defines the number of different tokens that can be represented by the | |
`input` passed when calling [`CpmAntModel`]. | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimension of the encoder layers. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads in the Transformer encoder. | |
dim_head (`int`, *optional*, defaults to 128): | |
Dimension of attention heads for each attention layer in the Transformer encoder. | |
dim_ff (`int`, *optional*, defaults to 10240): | |
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 48): | |
Number of layers of the Transformer encoder. | |
dropout_p (`float`, *optional*, defaults to 0.0): | |
The dropout probabilitiy for all fully connected layers in the embeddings, encoder. | |
position_bias_num_buckets (`int`, *optional*, defaults to 512): | |
The number of position_bias buckets. | |
position_bias_max_distance (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the layer normalization layers. | |
init_std (`float`, *optional*, defaults to 1.0): | |
Initialize parameters with std = init_std. | |
prompt_types (`int`, *optional*, defaults to 32): | |
The type of prompt. | |
prompt_length (`int`, *optional*, defaults to 32): | |
The length of prompt. | |
segment_types (`int`, *optional*, defaults to 32): | |
The type of segment. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether to use cache. | |
Example: | |
```python | |
>>> from transformers import CpmAntModel, CpmAntConfig | |
>>> # Initializing a CPMAnt cpm-ant-10b style configuration | |
>>> configuration = CpmAntConfig() | |
>>> # Initializing a model from the cpm-ant-10b style configuration | |
>>> model = CpmAntModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "cpmant" | |
def __init__( | |
self, | |
vocab_size: int = 30720, | |
hidden_size: int = 4096, | |
num_attention_heads: int = 32, | |
dim_head: int = 128, | |
dim_ff: int = 10240, | |
num_hidden_layers: int = 48, | |
dropout_p: int = 0.0, | |
position_bias_num_buckets: int = 512, | |
position_bias_max_distance: int = 2048, | |
eps: int = 1e-6, | |
init_std: float = 1.0, | |
prompt_types: int = 32, | |
prompt_length: int = 32, | |
segment_types: int = 32, | |
use_cache: bool = True, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.prompt_types = prompt_types | |
self.prompt_length = prompt_length | |
self.segment_types = segment_types | |
self.hidden_size = hidden_size | |
self.num_attention_heads = num_attention_heads | |
self.dim_head = dim_head | |
self.dim_ff = dim_ff | |
self.num_hidden_layers = num_hidden_layers | |
self.position_bias_num_buckets = position_bias_num_buckets | |
self.position_bias_max_distance = position_bias_max_distance | |
self.dropout_p = dropout_p | |
self.eps = eps | |
self.use_cache = use_cache | |
self.vocab_size = vocab_size | |
self.init_std = init_std | |