Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import argparse | |
import os | |
import copy | |
import numpy as np | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
# Grounding DINO | |
import GroundingDINO.groundingdino.datasets.transforms as T | |
from GroundingDINO.groundingdino.models import build_model | |
from GroundingDINO.groundingdino.util import box_ops | |
from GroundingDINO.groundingdino.util.slconfig import SLConfig | |
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
# segment anything | |
from segment_anything import build_sam, SamPredictor | |
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# diffusers | |
import PIL | |
import requests | |
import torch | |
from io import BytesIO | |
from diffusers import StableDiffusionInpaintPipeline | |
from huggingface_hub import hf_hub_download | |
def load_model_hf(model_config_path, repo_id, filename, device='cpu'): | |
args = SLConfig.fromfile(model_config_path) | |
model = build_model(args) | |
args.device = device | |
cache_file = hf_hub_download(repo_id=repo_id, filename=filename) | |
checkpoint = torch.load(cache_file, map_location='cpu') | |
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) | |
print("Model loaded from {} \n => {}".format(cache_file, log)) | |
_ = model.eval() | |
return model | |
def plot_boxes_to_image(image_pil, tgt): | |
H, W = tgt["size"] | |
boxes = tgt["boxes"] | |
labels = tgt["labels"] | |
assert len(boxes) == len(labels), "boxes and labels must have same length" | |
draw = ImageDraw.Draw(image_pil) | |
mask = Image.new("L", image_pil.size, 0) | |
mask_draw = ImageDraw.Draw(mask) | |
# draw boxes and masks | |
for box, label in zip(boxes, labels): | |
# from 0..1 to 0..W, 0..H | |
box = box * torch.Tensor([W, H, W, H]) | |
# from xywh to xyxy | |
box[:2] -= box[2:] / 2 | |
box[2:] += box[:2] | |
# random color | |
color = tuple(np.random.randint(0, 255, size=3).tolist()) | |
# draw | |
x0, y0, x1, y1 = box | |
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) | |
draw.rectangle([x0, y0, x1, y1], outline=color, width=6) | |
# draw.text((x0, y0), str(label), fill=color) | |
font = ImageFont.load_default() | |
if hasattr(font, "getbbox"): | |
bbox = draw.textbbox((x0, y0), str(label), font) | |
else: | |
w, h = draw.textsize(str(label), font) | |
bbox = (x0, y0, w + x0, y0 + h) | |
# bbox = draw.textbbox((x0, y0), str(label)) | |
draw.rectangle(bbox, fill=color) | |
draw.text((x0, y0), str(label), fill="white") | |
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6) | |
return image_pil, mask | |
def load_image(image_path): | |
# # load image | |
# image_pil = Image.open(image_path).convert("RGB") # load image | |
image_pil = image_path | |
transform = T.Compose( | |
[ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image, _ = transform(image_pil, None) # 3, h, w | |
return image_pil, image | |
def load_model(model_config_path, model_checkpoint_path, device): | |
args = SLConfig.fromfile(model_config_path) | |
args.device = device | |
model = build_model(args) | |
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") | |
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) | |
print(load_res) | |
_ = model.eval() | |
return model | |
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"): | |
caption = caption.lower() | |
caption = caption.strip() | |
if not caption.endswith("."): | |
caption = caption + "." | |
model = model.to(device) | |
image = image.to(device) | |
with torch.no_grad(): | |
outputs = model(image[None], captions=[caption]) | |
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
logits.shape[0] | |
# filter output | |
logits_filt = logits.clone() | |
boxes_filt = boxes.clone() | |
filt_mask = logits_filt.max(dim=1)[0] > box_threshold | |
logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
logits_filt.shape[0] | |
# get phrase | |
tokenlizer = model.tokenizer | |
tokenized = tokenlizer(caption) | |
# build pred | |
pred_phrases = [] | |
for logit, box in zip(logits_filt, boxes_filt): | |
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) | |
if with_logits: | |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") | |
else: | |
pred_phrases.append(pred_phrase) | |
return boxes_filt, pred_phrases | |
def show_mask(mask, ax, random_color=False): | |
if random_color: | |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
else: | |
color = np.array([30/255, 144/255, 255/255, 0.6]) | |
h, w = mask.shape[-2:] | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
ax.imshow(mask_image) | |
def show_box(box, ax, label): | |
x0, y0 = box[0], box[1] | |
w, h = box[2] - box[0], box[3] - box[1] | |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) | |
ax.text(x0, y0, label) | |
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py' | |
ckpt_repo_id = "ShilongLiu/GroundingDINO" | |
ckpt_filenmae = "groundingdino_swint_ogc.pth" | |
sam_checkpoint='/home/ecs-user/download/sam_vit_h_4b8939.pth' | |
output_dir="outputs" | |
device="cuda" | |
def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold): | |
assert text_prompt, 'text_prompt is not found!' | |
# make dir | |
os.makedirs(output_dir, exist_ok=True) | |
# load image | |
image_pil, image = load_image(image_path.convert("RGB")) | |
# load model | |
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae) | |
# visualize raw image | |
image_pil.save(os.path.join(output_dir, "raw_image.jpg")) | |
# run grounding dino model | |
boxes_filt, pred_phrases = get_grounding_output( | |
model, image, text_prompt, box_threshold, text_threshold, device=device | |
) | |
size = image_pil.size | |
if task_type == 'seg' or task_type == 'inpainting': | |
# initialize SAM | |
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint)) | |
image = np.array(image_path) | |
predictor.set_image(image) | |
H, W = size[1], size[0] | |
for i in range(boxes_filt.size(0)): | |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
boxes_filt[i][2:] += boxes_filt[i][:2] | |
boxes_filt = boxes_filt.cpu() | |
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]) | |
masks, _, _ = predictor.predict_torch( | |
point_coords = None, | |
point_labels = None, | |
boxes = transformed_boxes, | |
multimask_output = False, | |
) | |
# masks: [1, 1, 512, 512] | |
if task_type == 'det': | |
pred_dict = { | |
"boxes": boxes_filt, | |
"size": [size[1], size[0]], # H,W | |
"labels": pred_phrases, | |
} | |
# import ipdb; ipdb.set_trace() | |
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0] | |
image_path = os.path.join(output_dir, "grounding_dino_output.jpg") | |
image_with_box.save(image_path) | |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) | |
return image_result | |
elif task_type == 'seg': | |
assert sam_checkpoint, 'sam_checkpoint is not found!' | |
# draw output image | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(image) | |
for mask in masks: | |
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) | |
for box, label in zip(boxes_filt, pred_phrases): | |
show_box(box.numpy(), plt.gca(), label) | |
plt.axis('off') | |
image_path = os.path.join(output_dir, "grounding_dino_output.jpg") | |
plt.savefig(image_path, bbox_inches="tight") | |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) | |
return image_result | |
elif task_type == 'inpainting': | |
assert inpaint_prompt, 'inpaint_prompt is not found!' | |
# inpainting pipeline | |
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release | |
mask_pil = Image.fromarray(mask) | |
image_pil = Image.fromarray(image) | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16 | |
) | |
pipe = pipe.to("cuda") | |
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0] | |
image_path = os.path.join(output_dir, "grounded_sam_inpainting_output.jpg") | |
image.save(image_path) | |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) | |
return image_result | |
else: | |
print("task_type:{} error!".format(task_type)) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True) | |
parser.add_argument("--debug", action="store_true", help="using debug mode") | |
parser.add_argument("--share", action="store_true", help="share the app") | |
args = parser.parse_args() | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="pil") | |
text_prompt = gr.Textbox(label="Detection Prompt") | |
task_type = gr.Textbox(label="task type: det/seg/inpainting") | |
inpaint_prompt = gr.Textbox(label="Inpaint Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
box_threshold = gr.Slider( | |
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001 | |
) | |
text_threshold = gr.Slider( | |
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 | |
) | |
with gr.Column(): | |
gallery = gr.outputs.Image( | |
type="pil", | |
).style(full_width=True, full_height=True) | |
run_button.click(fn=run_grounded_sam, inputs=[ | |
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold], outputs=[gallery]) | |
block.launch(server_name='0.0.0.0', server_port=7589, debug=args.debug, share=args.share) |