Spaces:
Running
on
T4
Running
on
T4
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import subprocess | |
import sys | |
import warnings | |
from argparse import ArgumentParser | |
from pathlib import Path | |
from packaging import version | |
from .. import AutoFeatureExtractor, AutoImageProcessor, AutoProcessor, AutoTokenizer | |
from ..utils import logging | |
from ..utils.import_utils import is_optimum_available | |
from .convert import export, validate_model_outputs | |
from .features import FeaturesManager | |
from .utils import get_preprocessor | |
MIN_OPTIMUM_VERSION = "1.5.0" | |
ENCODER_DECODER_MODELS = ["vision-encoder-decoder"] | |
def export_with_optimum(args): | |
if is_optimum_available(): | |
from optimum.version import __version__ as optimum_version | |
parsed_optimum_version = version.parse(optimum_version) | |
if parsed_optimum_version < version.parse(MIN_OPTIMUM_VERSION): | |
raise RuntimeError( | |
f"transformers.onnx requires optimum >= {MIN_OPTIMUM_VERSION} but {optimum_version} is installed. You " | |
"can upgrade optimum by running: pip install -U optimum[exporters]" | |
) | |
else: | |
raise RuntimeError( | |
"transformers.onnx requires optimum to run, you can install the library by running: pip install " | |
"optimum[exporters]" | |
) | |
cmd_line = [ | |
sys.executable, | |
"-m", | |
"optimum.exporters.onnx", | |
f"--model {args.model}", | |
f"--task {args.feature}", | |
f"--framework {args.framework}" if args.framework is not None else "", | |
f"{args.output}", | |
] | |
proc = subprocess.Popen(" ".join(cmd_line), stdout=subprocess.PIPE, shell=True) | |
proc.wait() | |
logger.info( | |
"The export was done by optimum.exporters.onnx. We recommend using to use this package directly in future, as " | |
"transformers.onnx is deprecated, and will be removed in v5. You can find more information here: " | |
"https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model." | |
) | |
def export_with_transformers(args): | |
args.output = args.output if args.output.is_file() else args.output.joinpath("model.onnx") | |
if not args.output.parent.exists(): | |
args.output.parent.mkdir(parents=True) | |
# Allocate the model | |
model = FeaturesManager.get_model_from_feature( | |
args.feature, args.model, framework=args.framework, cache_dir=args.cache_dir | |
) | |
model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(model, feature=args.feature) | |
onnx_config = model_onnx_config(model.config) | |
if model_kind in ENCODER_DECODER_MODELS: | |
encoder_model = model.get_encoder() | |
decoder_model = model.get_decoder() | |
encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config) | |
decoder_onnx_config = onnx_config.get_decoder_config( | |
encoder_model.config, decoder_model.config, feature=args.feature | |
) | |
if args.opset is None: | |
args.opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset) | |
if args.opset < min(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset): | |
raise ValueError( | |
f"Opset {args.opset} is not sufficient to export {model_kind}. At least " | |
f" {min(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)} is required." | |
) | |
preprocessor = AutoFeatureExtractor.from_pretrained(args.model) | |
onnx_inputs, onnx_outputs = export( | |
preprocessor, | |
encoder_model, | |
encoder_onnx_config, | |
args.opset, | |
args.output.parent.joinpath("encoder_model.onnx"), | |
) | |
validate_model_outputs( | |
encoder_onnx_config, | |
preprocessor, | |
encoder_model, | |
args.output.parent.joinpath("encoder_model.onnx"), | |
onnx_outputs, | |
args.atol if args.atol else encoder_onnx_config.atol_for_validation, | |
) | |
preprocessor = AutoTokenizer.from_pretrained(args.model) | |
onnx_inputs, onnx_outputs = export( | |
preprocessor, | |
decoder_model, | |
decoder_onnx_config, | |
args.opset, | |
args.output.parent.joinpath("decoder_model.onnx"), | |
) | |
validate_model_outputs( | |
decoder_onnx_config, | |
preprocessor, | |
decoder_model, | |
args.output.parent.joinpath("decoder_model.onnx"), | |
onnx_outputs, | |
args.atol if args.atol else decoder_onnx_config.atol_for_validation, | |
) | |
logger.info( | |
f"All good, model saved at: {args.output.parent.joinpath('encoder_model.onnx').as_posix()}," | |
f" {args.output.parent.joinpath('decoder_model.onnx').as_posix()}" | |
) | |
else: | |
# Instantiate the appropriate preprocessor | |
if args.preprocessor == "auto": | |
preprocessor = get_preprocessor(args.model) | |
elif args.preprocessor == "tokenizer": | |
preprocessor = AutoTokenizer.from_pretrained(args.model) | |
elif args.preprocessor == "image_processor": | |
preprocessor = AutoImageProcessor.from_pretrained(args.model) | |
elif args.preprocessor == "feature_extractor": | |
preprocessor = AutoFeatureExtractor.from_pretrained(args.model) | |
elif args.preprocessor == "processor": | |
preprocessor = AutoProcessor.from_pretrained(args.model) | |
else: | |
raise ValueError(f"Unknown preprocessor type '{args.preprocessor}'") | |
# Ensure the requested opset is sufficient | |
if args.opset is None: | |
args.opset = onnx_config.default_onnx_opset | |
if args.opset < onnx_config.default_onnx_opset: | |
raise ValueError( | |
f"Opset {args.opset} is not sufficient to export {model_kind}. " | |
f"At least {onnx_config.default_onnx_opset} is required." | |
) | |
onnx_inputs, onnx_outputs = export( | |
preprocessor, | |
model, | |
onnx_config, | |
args.opset, | |
args.output, | |
) | |
if args.atol is None: | |
args.atol = onnx_config.atol_for_validation | |
validate_model_outputs(onnx_config, preprocessor, model, args.output, onnx_outputs, args.atol) | |
logger.info(f"All good, model saved at: {args.output.as_posix()}") | |
warnings.warn( | |
"The export was done by transformers.onnx which is deprecated and will be removed in v5. We recommend" | |
" using optimum.exporters.onnx in future. You can find more information here:" | |
" https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model.", | |
FutureWarning, | |
) | |
def main(): | |
parser = ArgumentParser("Hugging Face Transformers ONNX exporter") | |
parser.add_argument( | |
"-m", "--model", type=str, required=True, help="Model ID on huggingface.co or path on disk to load model from." | |
) | |
parser.add_argument( | |
"--feature", | |
default="default", | |
help="The type of features to export the model with.", | |
) | |
parser.add_argument("--opset", type=int, default=None, help="ONNX opset version to export the model with.") | |
parser.add_argument( | |
"--atol", type=float, default=None, help="Absolute difference tolerance when validating the model." | |
) | |
parser.add_argument( | |
"--framework", | |
type=str, | |
choices=["pt", "tf"], | |
default=None, | |
help=( | |
"The framework to use for the ONNX export." | |
" If not provided, will attempt to use the local checkpoint's original framework" | |
" or what is available in the environment." | |
), | |
) | |
parser.add_argument("output", type=Path, help="Path indicating where to store generated ONNX model.") | |
parser.add_argument("--cache_dir", type=str, default=None, help="Path indicating where to store cache.") | |
parser.add_argument( | |
"--preprocessor", | |
type=str, | |
choices=["auto", "tokenizer", "feature_extractor", "image_processor", "processor"], | |
default="auto", | |
help="Which type of preprocessor to use. 'auto' tries to automatically detect it.", | |
) | |
parser.add_argument( | |
"--export_with_transformers", | |
action="store_true", | |
help=( | |
"Whether to use transformers.onnx instead of optimum.exporters.onnx to perform the ONNX export. It can be " | |
"useful when exporting a model supported in transformers but not in optimum, otherwise it is not " | |
"recommended." | |
), | |
) | |
args = parser.parse_args() | |
if args.export_with_transformers or not is_optimum_available(): | |
export_with_transformers(args) | |
else: | |
export_with_optimum(args) | |
if __name__ == "__main__": | |
logger = logging.get_logger("transformers.onnx") # pylint: disable=invalid-name | |
logger.setLevel(logging.INFO) | |
main() | |