Spaces:
Running
on
T4
Running
on
T4
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import tensorflow as tf | |
from packaging import version | |
def _gelu(x): | |
""" | |
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when | |
initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see | |
https://arxiv.org/abs/1606.08415 | |
""" | |
x = tf.convert_to_tensor(x) | |
cdf = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0), x.dtype))) | |
return x * cdf | |
def _gelu_new(x): | |
""" | |
Gaussian Error Linear Unit. This is a smoother version of the GELU. Original paper: https://arxiv.org/abs/1606.0841 | |
Args: | |
x: float Tensor to perform activation | |
Returns: | |
`x` with the GELU activation applied. | |
""" | |
x = tf.convert_to_tensor(x) | |
pi = tf.cast(math.pi, x.dtype) | |
coeff = tf.cast(0.044715, x.dtype) | |
cdf = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coeff * tf.pow(x, 3)))) | |
return x * cdf | |
def mish(x): | |
x = tf.convert_to_tensor(x) | |
return x * tf.tanh(tf.math.softplus(x)) | |
def gelu_fast(x): | |
x = tf.convert_to_tensor(x) | |
coeff1 = tf.cast(0.044715, x.dtype) | |
coeff2 = tf.cast(0.7978845608, x.dtype) | |
return 0.5 * x * (1.0 + tf.tanh(x * coeff2 * (1.0 + coeff1 * x * x))) | |
def quick_gelu(x): | |
x = tf.convert_to_tensor(x) | |
coeff = tf.cast(1.702, x.dtype) | |
return x * tf.math.sigmoid(coeff * x) | |
def gelu_10(x): | |
""" | |
Clip the range of possible GeLU outputs between [-10, 10]. This is especially useful for quantization purpose, as | |
it allows mapping 2 negatives values in the GeLU spectrum. For more information on this trick, please refer to | |
https://arxiv.org/abs/2004.09602 | |
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when | |
initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see | |
https://arxiv.org/abs/1606.08415 :param x: :return: | |
""" | |
return tf.clip_by_value(_gelu(x), -10, 10) | |
def glu(x, axis=-1): | |
""" | |
Gated Linear Unit. Implementation as defined in the original paper (see https://arxiv.org/abs/1612.08083), where | |
the input `x` is split in two halves across a dimension (`axis`), A and B, returning A * sigmoid(B). | |
Args: | |
`x`: float Tensor to perform activation | |
`axis`: dimension across which `x` be split in half | |
Returns: | |
`x` with the GLU activation applied (with its size halved across the dimension `axis`). | |
""" | |
a, b = tf.split(x, 2, axis=axis) | |
return a * tf.math.sigmoid(b) | |
if version.parse(tf.version.VERSION) >= version.parse("2.4"): | |
def approximate_gelu_wrap(x): | |
return tf.keras.activations.gelu(x, approximate=True) | |
gelu = tf.keras.activations.gelu | |
gelu_new = approximate_gelu_wrap | |
else: | |
gelu = _gelu | |
gelu_new = _gelu_new | |
ACT2FN = { | |
"gelu": gelu, | |
"gelu_10": gelu_10, | |
"gelu_fast": gelu_fast, | |
"gelu_new": gelu_new, | |
"glu": glu, | |
"mish": mish, | |
"quick_gelu": quick_gelu, | |
"relu": tf.keras.activations.relu, | |
"sigmoid": tf.keras.activations.sigmoid, | |
"silu": tf.keras.activations.swish, | |
"swish": tf.keras.activations.swish, | |
"tanh": tf.keras.activations.tanh, | |
} | |
def get_tf_activation(activation_string): | |
if activation_string in ACT2FN: | |
return ACT2FN[activation_string] | |
else: | |
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}") | |