Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import csv | |
import dataclasses | |
import json | |
from dataclasses import dataclass | |
from typing import List, Optional, Union | |
from ...utils import is_tf_available, is_torch_available, logging | |
logger = logging.get_logger(__name__) | |
class InputExample: | |
""" | |
A single training/test example for simple sequence classification. | |
Args: | |
guid: Unique id for the example. | |
text_a: string. The untokenized text of the first sequence. For single | |
sequence tasks, only this sequence must be specified. | |
text_b: (Optional) string. The untokenized text of the second sequence. | |
Only must be specified for sequence pair tasks. | |
label: (Optional) string. The label of the example. This should be | |
specified for train and dev examples, but not for test examples. | |
""" | |
guid: str | |
text_a: str | |
text_b: Optional[str] = None | |
label: Optional[str] = None | |
def to_json_string(self): | |
"""Serializes this instance to a JSON string.""" | |
return json.dumps(dataclasses.asdict(self), indent=2) + "\n" | |
class InputFeatures: | |
""" | |
A single set of features of data. Property names are the same names as the corresponding inputs to a model. | |
Args: | |
input_ids: Indices of input sequence tokens in the vocabulary. | |
attention_mask: Mask to avoid performing attention on padding token indices. | |
Mask values selected in `[0, 1]`: Usually `1` for tokens that are NOT MASKED, `0` for MASKED (padded) | |
tokens. | |
token_type_ids: (Optional) Segment token indices to indicate first and second | |
portions of the inputs. Only some models use them. | |
label: (Optional) Label corresponding to the input. Int for classification problems, | |
float for regression problems. | |
""" | |
input_ids: List[int] | |
attention_mask: Optional[List[int]] = None | |
token_type_ids: Optional[List[int]] = None | |
label: Optional[Union[int, float]] = None | |
def to_json_string(self): | |
"""Serializes this instance to a JSON string.""" | |
return json.dumps(dataclasses.asdict(self)) + "\n" | |
class DataProcessor: | |
"""Base class for data converters for sequence classification data sets.""" | |
def get_example_from_tensor_dict(self, tensor_dict): | |
""" | |
Gets an example from a dict with tensorflow tensors. | |
Args: | |
tensor_dict: Keys and values should match the corresponding Glue | |
tensorflow_dataset examples. | |
""" | |
raise NotImplementedError() | |
def get_train_examples(self, data_dir): | |
"""Gets a collection of [`InputExample`] for the train set.""" | |
raise NotImplementedError() | |
def get_dev_examples(self, data_dir): | |
"""Gets a collection of [`InputExample`] for the dev set.""" | |
raise NotImplementedError() | |
def get_test_examples(self, data_dir): | |
"""Gets a collection of [`InputExample`] for the test set.""" | |
raise NotImplementedError() | |
def get_labels(self): | |
"""Gets the list of labels for this data set.""" | |
raise NotImplementedError() | |
def tfds_map(self, example): | |
""" | |
Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are. This method converts | |
examples to the correct format. | |
""" | |
if len(self.get_labels()) > 1: | |
example.label = self.get_labels()[int(example.label)] | |
return example | |
def _read_tsv(cls, input_file, quotechar=None): | |
"""Reads a tab separated value file.""" | |
with open(input_file, "r", encoding="utf-8-sig") as f: | |
return list(csv.reader(f, delimiter="\t", quotechar=quotechar)) | |
class SingleSentenceClassificationProcessor(DataProcessor): | |
"""Generic processor for a single sentence classification data set.""" | |
def __init__(self, labels=None, examples=None, mode="classification", verbose=False): | |
self.labels = [] if labels is None else labels | |
self.examples = [] if examples is None else examples | |
self.mode = mode | |
self.verbose = verbose | |
def __len__(self): | |
return len(self.examples) | |
def __getitem__(self, idx): | |
if isinstance(idx, slice): | |
return SingleSentenceClassificationProcessor(labels=self.labels, examples=self.examples[idx]) | |
return self.examples[idx] | |
def create_from_csv( | |
cls, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, **kwargs | |
): | |
processor = cls(**kwargs) | |
processor.add_examples_from_csv( | |
file_name, | |
split_name=split_name, | |
column_label=column_label, | |
column_text=column_text, | |
column_id=column_id, | |
skip_first_row=skip_first_row, | |
overwrite_labels=True, | |
overwrite_examples=True, | |
) | |
return processor | |
def create_from_examples(cls, texts_or_text_and_labels, labels=None, **kwargs): | |
processor = cls(**kwargs) | |
processor.add_examples(texts_or_text_and_labels, labels=labels) | |
return processor | |
def add_examples_from_csv( | |
self, | |
file_name, | |
split_name="", | |
column_label=0, | |
column_text=1, | |
column_id=None, | |
skip_first_row=False, | |
overwrite_labels=False, | |
overwrite_examples=False, | |
): | |
lines = self._read_tsv(file_name) | |
if skip_first_row: | |
lines = lines[1:] | |
texts = [] | |
labels = [] | |
ids = [] | |
for i, line in enumerate(lines): | |
texts.append(line[column_text]) | |
labels.append(line[column_label]) | |
if column_id is not None: | |
ids.append(line[column_id]) | |
else: | |
guid = f"{split_name}-{i}" if split_name else str(i) | |
ids.append(guid) | |
return self.add_examples( | |
texts, labels, ids, overwrite_labels=overwrite_labels, overwrite_examples=overwrite_examples | |
) | |
def add_examples( | |
self, texts_or_text_and_labels, labels=None, ids=None, overwrite_labels=False, overwrite_examples=False | |
): | |
if labels is not None and len(texts_or_text_and_labels) != len(labels): | |
raise ValueError( | |
f"Text and labels have mismatched lengths {len(texts_or_text_and_labels)} and {len(labels)}" | |
) | |
if ids is not None and len(texts_or_text_and_labels) != len(ids): | |
raise ValueError(f"Text and ids have mismatched lengths {len(texts_or_text_and_labels)} and {len(ids)}") | |
if ids is None: | |
ids = [None] * len(texts_or_text_and_labels) | |
if labels is None: | |
labels = [None] * len(texts_or_text_and_labels) | |
examples = [] | |
added_labels = set() | |
for text_or_text_and_label, label, guid in zip(texts_or_text_and_labels, labels, ids): | |
if isinstance(text_or_text_and_label, (tuple, list)) and label is None: | |
text, label = text_or_text_and_label | |
else: | |
text = text_or_text_and_label | |
added_labels.add(label) | |
examples.append(InputExample(guid=guid, text_a=text, text_b=None, label=label)) | |
# Update examples | |
if overwrite_examples: | |
self.examples = examples | |
else: | |
self.examples.extend(examples) | |
# Update labels | |
if overwrite_labels: | |
self.labels = list(added_labels) | |
else: | |
self.labels = list(set(self.labels).union(added_labels)) | |
return self.examples | |
def get_features( | |
self, | |
tokenizer, | |
max_length=None, | |
pad_on_left=False, | |
pad_token=0, | |
mask_padding_with_zero=True, | |
return_tensors=None, | |
): | |
""" | |
Convert examples in a list of `InputFeatures` | |
Args: | |
tokenizer: Instance of a tokenizer that will tokenize the examples | |
max_length: Maximum example length | |
pad_on_left: If set to `True`, the examples will be padded on the left rather than on the right (default) | |
pad_token: Padding token | |
mask_padding_with_zero: If set to `True`, the attention mask will be filled by `1` for actual values | |
and by `0` for padded values. If set to `False`, inverts it (`1` for padded values, `0` for actual | |
values) | |
Returns: | |
If the `examples` input is a `tf.data.Dataset`, will return a `tf.data.Dataset` containing the | |
task-specific features. If the input is a list of `InputExamples`, will return a list of task-specific | |
`InputFeatures` which can be fed to the model. | |
""" | |
if max_length is None: | |
max_length = tokenizer.max_len | |
label_map = {label: i for i, label in enumerate(self.labels)} | |
all_input_ids = [] | |
for ex_index, example in enumerate(self.examples): | |
if ex_index % 10000 == 0: | |
logger.info(f"Tokenizing example {ex_index}") | |
input_ids = tokenizer.encode( | |
example.text_a, | |
add_special_tokens=True, | |
max_length=min(max_length, tokenizer.max_len), | |
) | |
all_input_ids.append(input_ids) | |
batch_length = max(len(input_ids) for input_ids in all_input_ids) | |
features = [] | |
for ex_index, (input_ids, example) in enumerate(zip(all_input_ids, self.examples)): | |
if ex_index % 10000 == 0: | |
logger.info(f"Writing example {ex_index}/{len(self.examples)}") | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
padding_length = batch_length - len(input_ids) | |
if pad_on_left: | |
input_ids = ([pad_token] * padding_length) + input_ids | |
attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask | |
else: | |
input_ids = input_ids + ([pad_token] * padding_length) | |
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) | |
if len(input_ids) != batch_length: | |
raise ValueError(f"Error with input length {len(input_ids)} vs {batch_length}") | |
if len(attention_mask) != batch_length: | |
raise ValueError(f"Error with input length {len(attention_mask)} vs {batch_length}") | |
if self.mode == "classification": | |
label = label_map[example.label] | |
elif self.mode == "regression": | |
label = float(example.label) | |
else: | |
raise ValueError(self.mode) | |
if ex_index < 5 and self.verbose: | |
logger.info("*** Example ***") | |
logger.info(f"guid: {example.guid}") | |
logger.info(f"input_ids: {' '.join([str(x) for x in input_ids])}") | |
logger.info(f"attention_mask: {' '.join([str(x) for x in attention_mask])}") | |
logger.info(f"label: {example.label} (id = {label})") | |
features.append(InputFeatures(input_ids=input_ids, attention_mask=attention_mask, label=label)) | |
if return_tensors is None: | |
return features | |
elif return_tensors == "tf": | |
if not is_tf_available(): | |
raise RuntimeError("return_tensors set to 'tf' but TensorFlow 2.0 can't be imported") | |
import tensorflow as tf | |
def gen(): | |
for ex in features: | |
yield ({"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label) | |
dataset = tf.data.Dataset.from_generator( | |
gen, | |
({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64), | |
({"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, tf.TensorShape([])), | |
) | |
return dataset | |
elif return_tensors == "pt": | |
if not is_torch_available(): | |
raise RuntimeError("return_tensors set to 'pt' but PyTorch can't be imported") | |
import torch | |
from torch.utils.data import TensorDataset | |
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) | |
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) | |
if self.mode == "classification": | |
all_labels = torch.tensor([f.label for f in features], dtype=torch.long) | |
elif self.mode == "regression": | |
all_labels = torch.tensor([f.label for f in features], dtype=torch.float) | |
dataset = TensorDataset(all_input_ids, all_attention_mask, all_labels) | |
return dataset | |
else: | |
raise ValueError("return_tensors should be one of 'tf' or 'pt'") | |