Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2021 The Google AI Flax Team Authors, and The HuggingFace Inc. team. | |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import inspect | |
import warnings | |
from functools import partial | |
from typing import Any, Dict, Optional, Union | |
import flax | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
from jax import lax | |
from ..models.auto import ( | |
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, | |
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING, | |
) | |
from ..utils import ModelOutput, logging | |
from .configuration_utils import GenerationConfig | |
from .flax_logits_process import ( | |
FlaxForcedBOSTokenLogitsProcessor, | |
FlaxForcedEOSTokenLogitsProcessor, | |
FlaxForceTokensLogitsProcessor, | |
FlaxLogitsProcessorList, | |
FlaxMinLengthLogitsProcessor, | |
FlaxSuppressTokensAtBeginLogitsProcessor, | |
FlaxSuppressTokensLogitsProcessor, | |
FlaxTemperatureLogitsWarper, | |
FlaxTopKLogitsWarper, | |
FlaxTopPLogitsWarper, | |
) | |
logger = logging.get_logger(__name__) | |
class FlaxGreedySearchOutput(ModelOutput): | |
""" | |
Flax Base class for outputs of decoder-only generation models using greedy search. | |
Args: | |
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): | |
The generated sequences. | |
""" | |
sequences: jnp.ndarray = None | |
class FlaxSampleOutput(ModelOutput): | |
""" | |
Flax Base class for outputs of decoder-only generation models using sampling. | |
Args: | |
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): | |
The generated sequences. | |
""" | |
sequences: jnp.ndarray = None | |
class FlaxBeamSearchOutput(ModelOutput): | |
""" | |
Flax Base class for outputs of decoder-only generation models using greedy search. | |
Args: | |
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): | |
The generated sequences. | |
scores (`jnp.ndarray` of shape `(batch_size,)`): | |
The scores (log probabilities) of the generated sequences. | |
""" | |
sequences: jnp.ndarray = None | |
scores: jnp.ndarray = None | |
class GreedyState: | |
cur_len: jnp.ndarray | |
sequences: jnp.ndarray | |
running_token: jnp.ndarray | |
is_sent_finished: jnp.ndarray | |
model_kwargs: Dict[str, jnp.ndarray] | |
class SampleState: | |
cur_len: jnp.ndarray | |
sequences: jnp.ndarray | |
running_token: jnp.ndarray | |
is_sent_finished: jnp.ndarray | |
prng_key: jnp.ndarray | |
model_kwargs: Dict[str, jnp.ndarray] | |
class BeamSearchState: | |
cur_len: jnp.ndarray | |
running_sequences: jnp.ndarray | |
running_scores: jnp.ndarray | |
sequences: jnp.ndarray | |
scores: jnp.ndarray | |
is_sent_finished: jnp.ndarray | |
model_kwargs: Dict[str, jnp.ndarray] | |
class FlaxGenerationMixin: | |
""" | |
A class containing all functions for auto-regressive text generation, to be used as a mixin in | |
[`FlaxPreTrainedModel`]. | |
The class exposes [`~generation.FlaxGenerationMixin.generate`], which can be used for: | |
- *greedy decoding* by calling [`~generation.FlaxGenerationMixin._greedy_search`] if `num_beams=1` and | |
`do_sample=False` | |
- *multinomial sampling* by calling [`~generation.FlaxGenerationMixin._sample`] if `num_beams=1` and | |
`do_sample=True` | |
- *beam-search decoding* by calling [`~generation.FlaxGenerationMixin._beam_search`] if `num_beams>1` and | |
`do_sample=False` | |
You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To | |
learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies). | |
""" | |
def prepare_inputs_for_generation(self, *args, **kwargs): | |
raise NotImplementedError( | |
"A model class needs to define a `prepare_inputs_for_generation` method in order to use `generate`." | |
) | |
def _run_loop_in_debug(cond_fn, body_fn, init_state): | |
""" | |
Run generation in untraced mode. This should only be used for debugging purposes. | |
""" | |
state = init_state | |
while cond_fn(state): | |
state = body_fn(state) | |
return state | |
def _prepare_encoder_decoder_kwargs_for_generation(self, input_ids, params, model_kwargs): | |
encoder_kwargs = { | |
argument: value | |
for argument, value in model_kwargs.items() | |
if not (argument.startswith("decoder_") or argument.startswith("cross_attn")) | |
} | |
model_kwargs["encoder_outputs"] = self.encode(input_ids, params=params, return_dict=True, **encoder_kwargs) | |
return model_kwargs | |
def _prepare_decoder_input_ids_for_generation( | |
self, | |
batch_size: int, | |
decoder_start_token_id: int = None, | |
bos_token_id: int = None, | |
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, | |
) -> jnp.ndarray: | |
if model_kwargs is not None and "decoder_input_ids" in model_kwargs: | |
# Only use this arg if not None, otherwise just remove from model_kwargs | |
decoder_input_ids = model_kwargs.pop("decoder_input_ids") | |
if decoder_input_ids is not None: | |
return decoder_input_ids | |
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) | |
return jnp.array(decoder_start_token_id, dtype="i4").reshape(1, -1).repeat(batch_size, axis=0) | |
def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int: | |
# retrieve decoder_start_token_id for encoder-decoder models | |
# fall back to bos_token_id if necessary | |
decoder_start_token_id = ( | |
decoder_start_token_id | |
if decoder_start_token_id is not None | |
else self.generation_config.decoder_start_token_id | |
) | |
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id | |
if decoder_start_token_id is not None: | |
return decoder_start_token_id | |
elif ( | |
hasattr(self.config, "decoder") | |
and hasattr(self.config.decoder, "decoder_start_token_id") | |
and self.config.decoder.decoder_start_token_id is not None | |
): | |
return self.config.decoder.decoder_start_token_id | |
elif bos_token_id is not None: | |
return bos_token_id | |
elif ( | |
hasattr(self.config, "decoder") | |
and hasattr(self.config.decoder, "bos_token_id") | |
and self.config.decoder.bos_token_id is not None | |
): | |
return self.config.decoder.bos_token_id | |
raise ValueError( | |
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." | |
) | |
def _expand_to_num_beams(tensor, num_beams): | |
return jnp.broadcast_to(tensor[:, None], (tensor.shape[0], num_beams) + tensor.shape[1:]) | |
def _adapt_logits_for_beam_search(self, logits): | |
""" | |
This function can be overwritten in the specific modeling_flax_<model-name>.py classes to allow for custom beam | |
search behavior. Note that the only model that overwrites this method is [`~transformes.FlaxMarianMTModel`]. | |
""" | |
return logits | |
def _validate_model_class(self): | |
""" | |
Confirms that the model class is compatible with generation. If not, raises an exception that points to the | |
right class to use. | |
""" | |
if not self.can_generate(): | |
generate_compatible_mappings = [ | |
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, | |
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING, | |
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
] | |
generate_compatible_classes = set() | |
for model_mapping in generate_compatible_mappings: | |
supported_models = model_mapping.get(type(self.config), default=None) | |
if supported_models is not None: | |
generate_compatible_classes.add(supported_models.__name__) | |
exception_message = ( | |
f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as " | |
"it doesn't have a language model head." | |
) | |
if generate_compatible_classes: | |
exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}" | |
raise TypeError(exception_message) | |
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): | |
"""Validates model kwargs for generation. Generate argument typos will also be caught here.""" | |
unused_model_args = [] | |
model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters) | |
# `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If | |
# `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;) | |
if "kwargs" in model_args or "model_kwargs" in model_args: | |
model_args |= set(inspect.signature(self.__call__).parameters) | |
for key, value in model_kwargs.items(): | |
if value is not None and key not in model_args: | |
unused_model_args.append(key) | |
if unused_model_args: | |
raise ValueError( | |
f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the" | |
" generate arguments will also show up in this list)" | |
) | |
def generate( | |
self, | |
input_ids: jnp.ndarray, | |
generation_config: Optional[GenerationConfig] = None, | |
prng_key: Optional[jnp.ndarray] = None, | |
trace: bool = True, | |
params: Optional[Dict[str, jnp.ndarray]] = None, | |
logits_processor: Optional[FlaxLogitsProcessorList] = None, | |
**kwargs, | |
): | |
r""" | |
Generates sequences of token ids for models with a language modeling head. | |
Parameters: | |
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): | |
The sequence used as a prompt for the generation. | |
generation_config (`~generation.GenerationConfig`, *optional*): | |
The generation configuration to be used as base parametrization for the generation call. `**kwargs` | |
passed to generate matching the attributes of `generation_config` will override them. If | |
`generation_config` is not provided, the default will be used, which had the following loading | |
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model | |
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s | |
default values, whose documentation should be checked to parameterize generation. | |
trace (`bool`, *optional*, defaults to `True`): | |
Whether to trace generation. Setting `trace=False` should only be used for debugging and will lead to a | |
considerably slower runtime. | |
params (`Dict[str, jnp.ndarray]`, *optional*): | |
Optionally the model parameters can be passed. Can be useful for parallelized generation. | |
logits_processor (`FlaxLogitsProcessorList `, *optional*): | |
Custom logits processors that complement the default logits processors built from arguments and | |
generation config. If a logit processor is passed that is already created with the arguments or a | |
generation config an error is thrown. This feature is intended for advanced users. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be | |
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder | |
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. | |
Return: | |
[`~utils.ModelOutput`]. | |
""" | |
# Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call | |
self._validate_model_class() | |
# priority: `generation_config` argument > `model.generation_config` (the default generation config) | |
if generation_config is None: | |
# legacy: users may modify the model configuration to control generation. To trigger this legacy behavior, | |
# two conditions must be met | |
# 1) the generation config must have been created from the model config (`_from_model_config` field); | |
# 2) the generation config must have seen no modification since its creation (the hash is the same). | |
if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash( | |
self.generation_config | |
): | |
new_generation_config = GenerationConfig.from_model_config(self.config) | |
if new_generation_config != self.generation_config: | |
warnings.warn( | |
"You have modified the pretrained model configuration to control generation. This is a" | |
" deprecated strategy to control generation and will be removed soon, in a future version." | |
" Please use and modify the model generation configuration (see" | |
" https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )" | |
) | |
self.generation_config = new_generation_config | |
generation_config = self.generation_config | |
generation_config = copy.deepcopy(generation_config) | |
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs | |
generation_config.validate() | |
self._validate_model_kwargs(model_kwargs.copy()) | |
logits_processor = logits_processor if logits_processor is not None else FlaxLogitsProcessorList() | |
# set init values | |
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) | |
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: | |
if model_kwargs.get("attention_mask") is None: | |
logger.warning( | |
"The attention mask and the pad token id were not set. As a consequence, you may observe " | |
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." | |
) | |
eos_token_id = generation_config.eos_token_id | |
if isinstance(eos_token_id, list): | |
eos_token_id = eos_token_id[0] | |
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") | |
generation_config.pad_token_id = eos_token_id | |
if generation_config.decoder_start_token_id is None and self.config.is_encoder_decoder: | |
raise ValueError("`decoder_start_token_id` has to be defined for encoder-decoder generation.") | |
# decoder-only models should use left-padding for generation (can't be checked with `trace=True`) | |
if not self.config.is_encoder_decoder and not trace: | |
if ( | |
generation_config.pad_token_id is not None | |
and jnp.sum(input_ids[:, -1] == generation_config.pad_token_id) > 0 | |
): | |
logger.warning( | |
"A decoder-only architecture is being used, but right-padding was detected! For correct " | |
"generation results, please set `padding_side='left'` when initializing the tokenizer." | |
) | |
batch_size = input_ids.shape[0] | |
if self.config.is_encoder_decoder: | |
# add encoder_outputs to model_kwargs | |
if model_kwargs.get("encoder_outputs") is None: | |
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(input_ids, params, model_kwargs) | |
# prepare decoder_input_ids for generation | |
input_ids = self._prepare_decoder_input_ids_for_generation( | |
batch_size, | |
decoder_start_token_id=generation_config.decoder_start_token_id, | |
bos_token_id=generation_config.bos_token_id, | |
model_kwargs=model_kwargs, | |
) | |
# Prepare `max_length` depending on other stopping criteria. | |
input_ids_seq_length = input_ids.shape[-1] | |
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None | |
if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20: | |
# 20 is the default max_length of the generation config | |
warnings.warn( | |
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " | |
"to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation.", | |
UserWarning, | |
) | |
elif generation_config.max_new_tokens is not None: | |
if not has_default_max_length and generation_config.max_length is not None: | |
logger.warning( | |
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" | |
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " | |
"Please refer to the documentation for more information. " | |
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" | |
) | |
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length | |
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: | |
raise ValueError( | |
f"Unfeasable length constraints: the minimum length ({generation_config.min_length}) is larger than" | |
f" the maximum length ({generation_config.max_length})" | |
) | |
if input_ids_seq_length >= generation_config.max_length: | |
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" | |
logger.warning( | |
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" | |
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" | |
" increasing`max_new_tokens`." | |
) | |
logits_processor = self._get_logits_processor( | |
generation_config=generation_config, | |
input_ids_seq_length=input_ids_seq_length, | |
logits_processor=logits_processor, | |
) | |
if not generation_config.do_sample and generation_config.num_beams == 1: | |
return self._greedy_search( | |
input_ids, | |
generation_config.max_length, | |
generation_config.pad_token_id, | |
generation_config.eos_token_id, | |
logits_processor=logits_processor, | |
trace=trace, | |
params=params, | |
model_kwargs=model_kwargs, | |
) | |
elif generation_config.do_sample and generation_config.num_beams == 1: | |
logits_warper = self._get_logits_warper(generation_config=generation_config) | |
return self._sample( | |
input_ids, | |
generation_config.max_length, | |
generation_config.pad_token_id, | |
generation_config.eos_token_id, | |
prng_key, | |
logits_warper=logits_warper, | |
logits_processor=logits_processor, | |
trace=trace, | |
params=params, | |
model_kwargs=model_kwargs, | |
) | |
elif not generation_config.do_sample and generation_config.num_beams > 1: | |
# broadcast input_ids & encoder_outputs | |
input_ids = self._expand_to_num_beams(input_ids, num_beams=generation_config.num_beams) | |
if "encoder_outputs" in model_kwargs: | |
model_kwargs["encoder_outputs"]["last_hidden_state"] = self._expand_to_num_beams( | |
model_kwargs["encoder_outputs"]["last_hidden_state"], num_beams=generation_config.num_beams | |
) | |
for kwarg in ["attention_mask", "decoder_attention_mask"]: | |
if kwarg in model_kwargs: | |
model_kwargs[kwarg] = self._expand_to_num_beams( | |
model_kwargs[kwarg], num_beams=generation_config.num_beams | |
) | |
return self._beam_search( | |
input_ids, | |
generation_config.max_length, | |
generation_config.pad_token_id, | |
generation_config.eos_token_id, | |
length_penalty=generation_config.length_penalty, | |
early_stopping=generation_config.early_stopping, | |
logits_processor=logits_processor, | |
trace=trace, | |
params=params, | |
num_return_sequences=generation_config.num_return_sequences, | |
model_kwargs=model_kwargs, | |
) | |
else: | |
raise NotImplementedError("`Beam sampling is currently not implemented.") | |
def _get_logits_warper(self, generation_config: GenerationConfig) -> FlaxLogitsProcessorList: | |
""" | |
This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsWarper`] | |
instances used for multinomial sampling. | |
""" | |
warpers = FlaxLogitsProcessorList() | |
if generation_config.temperature is not None and generation_config.temperature != 1.0: | |
warpers.append(FlaxTemperatureLogitsWarper(generation_config.temperature)) | |
if generation_config.top_k is not None and generation_config.top_k != 0: | |
warpers.append(FlaxTopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=1)) | |
if generation_config.top_p is not None and generation_config.top_p < 1.0: | |
warpers.append(FlaxTopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=1)) | |
return warpers | |
def _get_logits_processor( | |
self, | |
generation_config: GenerationConfig, | |
input_ids_seq_length: int, | |
logits_processor: Optional[FlaxLogitsProcessorList], | |
) -> FlaxLogitsProcessorList: | |
""" | |
This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsProcessor`] | |
instances used to modify the scores of the language model head. | |
""" | |
processors = FlaxLogitsProcessorList() | |
if ( | |
generation_config.min_length is not None | |
and generation_config.eos_token_id is not None | |
and generation_config.min_length > -1 | |
): | |
processors.append( | |
FlaxMinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id) | |
) | |
if generation_config.forced_bos_token_id is not None: | |
processors.append(FlaxForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id)) | |
if generation_config.forced_eos_token_id is not None: | |
processors.append( | |
FlaxForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id) | |
) | |
if generation_config.suppress_tokens is not None: | |
processors.append(FlaxSuppressTokensLogitsProcessor(generation_config.suppress_tokens)) | |
if generation_config.begin_suppress_tokens is not None: | |
begin_index = input_ids_seq_length | |
begin_index = ( | |
begin_index | |
if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None) | |
else begin_index + 1 | |
) | |
if generation_config.forced_decoder_ids is not None and len(generation_config.forced_decoder_ids) > 0: | |
# generation starts after the last token that is forced | |
begin_index += generation_config.forced_decoder_ids[-1][0] | |
processors.append( | |
FlaxSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index) | |
) | |
if generation_config.forced_decoder_ids is not None: | |
forced_decoder_ids = [ | |
[input_ids_seq_length + i[0] - 1, i[1]] for i in generation_config.forced_decoder_ids | |
] | |
processors.append(FlaxForceTokensLogitsProcessor(forced_decoder_ids)) | |
processors = self._merge_criteria_processor_list(processors, logits_processor) | |
return processors | |
def _merge_criteria_processor_list( | |
self, | |
default_list: FlaxLogitsProcessorList, | |
custom_list: FlaxLogitsProcessorList, | |
) -> FlaxLogitsProcessorList: | |
if len(custom_list) == 0: | |
return default_list | |
for default in default_list: | |
for custom in custom_list: | |
if type(custom) is type(default): | |
object_type = "logits processor" | |
raise ValueError( | |
f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to" | |
f" `generate`, but it has already been created with the values {default}. {default} has been" | |
" created by passing the corresponding arguments to generate or by the model's config default" | |
f" values. If you just want to change the default values of {object_type} consider passing" | |
f" them as arguments to `generate` instead of using a custom {object_type}." | |
) | |
default_list.extend(custom_list) | |
return default_list | |
def _greedy_search( | |
self, | |
input_ids: None, | |
max_length: Optional[int] = None, | |
pad_token_id: Optional[int] = None, | |
eos_token_id: Optional[int] = None, | |
logits_processor: Optional[FlaxLogitsProcessorList] = None, | |
trace: bool = True, | |
params: Optional[Dict[str, jnp.ndarray]] = None, | |
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, | |
): | |
# init values | |
max_length = max_length if max_length is not None else self.generation_config.max_length | |
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id | |
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id | |
batch_size, cur_len = input_ids.shape | |
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None) | |
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32) | |
cur_len = jnp.array(cur_len) | |
# per batch-item holding current token in loop. | |
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32) | |
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0)) | |
# per batch-item state bit indicating if sentence has finished. | |
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_) | |
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop | |
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`. | |
model = self.decode if self.config.is_encoder_decoder else self | |
# initialize model specific kwargs | |
model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs) | |
# initialize state | |
state = GreedyState( | |
cur_len=cur_len, | |
sequences=sequences, | |
running_token=input_ids, | |
is_sent_finished=is_sent_finished, | |
model_kwargs=model_kwargs, | |
) | |
def greedy_search_cond_fn(state): | |
"""state termination condition fn.""" | |
has_reached_max_length = state.cur_len == max_length | |
all_sequence_finished = jnp.all(state.is_sent_finished) | |
finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished) | |
return ~finish_generation | |
def greedy_search_body_fn(state): | |
"""state update fn.""" | |
model_outputs = model(state.running_token, params=params, **state.model_kwargs) | |
logits = model_outputs.logits[:, -1] | |
# apply min_length, ... | |
logits = logits_processor(state.sequences, logits, state.cur_len) | |
next_token = jnp.argmax(logits, axis=-1) | |
next_token = next_token * ~state.is_sent_finished + pad_token_id * state.is_sent_finished | |
next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id) | |
next_token = next_token[:, None] | |
next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len)) | |
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) | |
return GreedyState( | |
cur_len=state.cur_len + 1, | |
sequences=next_sequences, | |
running_token=next_token, | |
is_sent_finished=next_is_sent_finished, | |
model_kwargs=next_model_kwargs, | |
) | |
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU | |
if input_ids.shape[1] > 1: | |
state = greedy_search_body_fn(state) | |
if not trace: | |
state = self._run_loop_in_debug(greedy_search_cond_fn, greedy_search_body_fn, state) | |
else: | |
state = lax.while_loop(greedy_search_cond_fn, greedy_search_body_fn, state) | |
return FlaxGreedySearchOutput(sequences=state.sequences) | |
def _sample( | |
self, | |
input_ids: None, | |
max_length: Optional[int] = None, | |
pad_token_id: Optional[int] = None, | |
eos_token_id: Optional[int] = None, | |
prng_key: Optional[jnp.ndarray] = None, | |
logits_processor: Optional[FlaxLogitsProcessorList] = None, | |
logits_warper: Optional[FlaxLogitsProcessorList] = None, | |
trace: bool = True, | |
params: Optional[Dict[str, jnp.ndarray]] = None, | |
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, | |
): | |
# init values | |
max_length = max_length if max_length is not None else self.generation_config.max_length | |
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id | |
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id | |
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) | |
batch_size, cur_len = input_ids.shape | |
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None) | |
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32) | |
cur_len = jnp.array(cur_len) | |
# per batch-item holding current token in loop. | |
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32) | |
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0)) | |
# per batch-item state bit indicating if sentence has finished. | |
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_) | |
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop | |
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`. | |
model = self.decode if self.config.is_encoder_decoder else self | |
# initialize model specific kwargs | |
model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs) | |
# initialize state | |
state = SampleState( | |
cur_len=cur_len, | |
sequences=sequences, | |
running_token=input_ids, | |
is_sent_finished=is_sent_finished, | |
prng_key=prng_key, | |
model_kwargs=model_kwargs, | |
) | |
def sample_search_cond_fn(state): | |
"""state termination condition fn.""" | |
has_reached_max_length = state.cur_len == max_length | |
all_sequence_finished = jnp.all(state.is_sent_finished) | |
finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished) | |
return ~finish_generation | |
def sample_search_body_fn(state): | |
"""state update fn.""" | |
prng_key, prng_key_next = jax.random.split(state.prng_key) | |
model_outputs = model(state.running_token, params=params, **state.model_kwargs) | |
logits = model_outputs.logits[:, -1] | |
# apply min_length, ... | |
logits = logits_processor(state.sequences, logits, state.cur_len) | |
# apply top_p, top_k, temperature | |
logits = logits_warper(logits, logits, state.cur_len) | |
next_token = jax.random.categorical(prng_key, logits, axis=-1) | |
next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id) | |
next_token = next_token * ~next_is_sent_finished + pad_token_id * next_is_sent_finished | |
next_token = next_token[:, None] | |
next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len)) | |
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) | |
return SampleState( | |
cur_len=state.cur_len + 1, | |
sequences=next_sequences, | |
running_token=next_token, | |
is_sent_finished=next_is_sent_finished, | |
model_kwargs=next_model_kwargs, | |
prng_key=prng_key_next, | |
) | |
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU | |
if input_ids.shape[1] > 1: | |
state = sample_search_body_fn(state) | |
if not trace: | |
state = self._run_loop_in_debug(sample_search_cond_fn, sample_search_body_fn, state) | |
else: | |
state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state) | |
return FlaxSampleOutput(sequences=state.sequences) | |
def _beam_search( | |
self, | |
input_ids: None, | |
max_length: Optional[int] = None, | |
pad_token_id: Optional[int] = None, | |
eos_token_id: Optional[int] = None, | |
length_penalty: Optional[float] = None, | |
early_stopping: Optional[Union[bool, str]] = None, | |
logits_processor: Optional[FlaxLogitsProcessorList] = None, | |
trace: bool = True, | |
params: Optional[Dict[str, jnp.ndarray]] = None, | |
num_return_sequences: Optional[int] = None, | |
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, | |
): | |
""" | |
This beam search function is heavily inspired by Flax's official example: | |
https://github.com/google/flax/blob/main/examples/wmt/decode.py | |
""" | |
def flatten_beam_dim(tensor): | |
"""Flattens the first two dimensions of a non-scalar array.""" | |
# ignore scalars (e.g. cache index) | |
if tensor.ndim == 0: | |
return tensor | |
return tensor.reshape((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) | |
def unflatten_beam_dim(tensor, batch_size, num_beams): | |
"""Unflattens the first, flat batch*beam dimension of a non-scalar array.""" | |
# ignore scalars (e.g. cache index) | |
if tensor.ndim == 0: | |
return tensor | |
return tensor.reshape((batch_size, num_beams) + tensor.shape[1:]) | |
def gather_beams(nested, beam_indices, batch_size, new_num_beams): | |
""" | |
Gathers the beam slices indexed by beam_indices into new beam array. | |
""" | |
batch_indices = jnp.reshape( | |
jnp.arange(batch_size * new_num_beams) // new_num_beams, (batch_size, new_num_beams) | |
) | |
def gather_fn(tensor): | |
# ignore scalars (e.g. cache index) | |
if tensor.ndim == 0: | |
return tensor | |
else: | |
return tensor[batch_indices, beam_indices] | |
return jax.tree_util.tree_map(gather_fn, nested) | |
# init values | |
max_length = max_length if max_length is not None else self.generation_config.max_length | |
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id | |
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id | |
length_penalty = length_penalty if length_penalty is not None else self.generation_config.length_penalty | |
early_stopping = early_stopping if early_stopping is not None else self.generation_config.early_stopping | |
num_return_sequences = ( | |
num_return_sequences if num_return_sequences is not None else self.generation_config.num_return_sequences | |
) | |
batch_size, num_beams, cur_len = input_ids.shape | |
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None) | |
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32) | |
cur_len = jnp.array(cur_len) | |
# per batch,beam-item holding current token in loop. | |
sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32) | |
running_sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32) | |
running_sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0, 0)) | |
# per batch,beam-item state bit indicating if sentence has finished. | |
is_sent_finished = jnp.zeros((batch_size, num_beams), dtype=jnp.bool_) | |
# per batch,beam-item score, logprobs | |
running_scores = jnp.tile(jnp.array([0.0] + [np.array(-1.0e7)] * (num_beams - 1)), [batch_size, 1]) | |
scores = jnp.ones((batch_size, num_beams)) * np.array(-1.0e7) | |
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop | |
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`. | |
model = self.decode if self.config.is_encoder_decoder else self | |
# flatten beam dim | |
if "encoder_outputs" in model_kwargs: | |
model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim( | |
model_kwargs["encoder_outputs"]["last_hidden_state"] | |
) | |
for kwarg in ["attention_mask", "decoder_attention_mask"]: | |
if kwarg in model_kwargs: | |
model_kwargs[kwarg] = flatten_beam_dim(model_kwargs[kwarg]) | |
# initialize model specific kwargs | |
model_kwargs = self.prepare_inputs_for_generation(flatten_beam_dim(input_ids), max_length, **model_kwargs) | |
# initialize state | |
state = BeamSearchState( | |
cur_len=cur_len, | |
running_sequences=running_sequences, | |
running_scores=running_scores, | |
sequences=sequences, | |
scores=scores, | |
is_sent_finished=is_sent_finished, | |
model_kwargs=model_kwargs, | |
) | |
def beam_search_cond_fn(state): | |
"""beam search state termination condition fn.""" | |
# 1. is less than max length? | |
not_max_length_yet = state.cur_len < max_length | |
# 2. can the new beams still improve? | |
# early_stopping == False -> apply heuristic = always get the best score from `cur_len`. See the discussion | |
# below for more details. | |
# https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565 | |
# early_stopping == "never" -> compute the best score from max_length or cur_len, depending on the sign of | |
# length_penalty. Positive length_penalty favors longer sequences, thus we use max_length there. | |
if early_stopping == "never" and length_penalty > 0.0: | |
best_running_score = state.running_scores[:, :1] / (max_length**length_penalty) | |
else: | |
best_running_score = state.running_scores[:, :1] / (state.cur_len**length_penalty) | |
worst_finished_score = jnp.where( | |
state.is_sent_finished, jnp.min(state.scores, axis=1, keepdims=True), np.array(-1.0e7) | |
) | |
improvement_still_possible = jnp.any(best_running_score > worst_finished_score) | |
# 3. is there still a beam that has not finished? | |
still_open_beam = ~(jnp.all(state.is_sent_finished) & (early_stopping is True)) | |
return not_max_length_yet & still_open_beam & improvement_still_possible | |
def beam_search_body_fn(state, input_ids_length=1): | |
"""beam search state update fn.""" | |
# 1. Forward current tokens | |
# Collect the current position slice along length to feed the fast | |
# autoregressive decoder model. Flatten the beam dimension into batch | |
# dimension for feeding into the model. | |
# unflatten beam dimension | |
# Unflatten beam dimension in attention cache arrays | |
input_token = flatten_beam_dim( | |
lax.dynamic_slice( | |
state.running_sequences, | |
(0, 0, state.cur_len - input_ids_length), | |
(batch_size, num_beams, input_ids_length), | |
) | |
) | |
model_outputs = model(input_token, params=params, **state.model_kwargs) | |
logits = unflatten_beam_dim(model_outputs.logits[:, -1], batch_size, num_beams) | |
cache = jax.tree_util.tree_map( | |
lambda tensor: unflatten_beam_dim(tensor, batch_size, num_beams), model_outputs.past_key_values | |
) | |
# adapt logits for FlaxMarianMTModel | |
logits = self._adapt_logits_for_beam_search(logits) | |
# 2. Compute log probs | |
# get log probabilities from logits, | |
# process logits with processors (*e.g.* min_length, ...), and | |
# add new logprobs to existing running logprobs scores. | |
log_probs = jax.nn.log_softmax(logits) | |
log_probs = logits_processor( | |
flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), state.cur_len | |
) | |
log_probs = unflatten_beam_dim(log_probs, batch_size, num_beams) | |
log_probs = log_probs + jnp.expand_dims(state.running_scores, axis=2) | |
vocab_size = log_probs.shape[2] | |
log_probs = log_probs.reshape((batch_size, num_beams * vocab_size)) | |
# 3. Retrieve top-K | |
# Each item in batch has num_beams * vocab_size candidate sequences. | |
# For each item, get the top 2*k candidates with the highest log- | |
# probabilities. We gather the top 2*K beams here so that even if the best | |
# K sequences reach EOS simultaneously, we have another K sequences | |
# remaining to continue the live beam search. | |
# Gather the top 2*K scores from _all_ beams. | |
# Gather 2*k top beams. | |
# Recover the beam index by floor division. | |
# Recover token id by modulo division and expand Id array for broadcasting. | |
# Update sequences for the 2*K top-k new sequences. | |
beams_to_keep = 2 * num_beams | |
topk_log_probs, topk_indices = lax.top_k(log_probs, k=beams_to_keep) | |
topk_beam_indices = topk_indices // vocab_size | |
topk_running_sequences = gather_beams( | |
state.running_sequences, topk_beam_indices, batch_size, beams_to_keep | |
) | |
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2) | |
topk_sequences = lax.dynamic_update_slice(topk_running_sequences, topk_ids, (0, 0, state.cur_len)) | |
# 4. Check which sequences have ended | |
# Update current sequences: | |
# Did any of these sequences reach an end marker? | |
# To prevent these just finished sequences from being added to the current sequences | |
# set of active beam search sequences, set their log probs to a very large | |
# negative value. | |
did_topk_just_finished = topk_sequences[:, :, state.cur_len] == eos_token_id | |
running_topk_log_probs = topk_log_probs + did_topk_just_finished * np.array(-1.0e7) | |
# 5. Get running sequences scores for next | |
# Determine the top k beam indices (from top 2*k beams) from log probs | |
# and gather top k beams (from top 2*k beams). | |
next_topk_indices = lax.top_k(running_topk_log_probs, k=num_beams)[1] | |
next_running_sequences, next_running_scores = gather_beams( | |
[topk_sequences, running_topk_log_probs], next_topk_indices, batch_size, num_beams | |
) | |
# 6. Process topk logits | |
# Further process log probs: | |
# - add length penalty | |
# - make sure no scores can be added anymore if beam is full | |
# - make sure still running sequences cannot be chosen as finalized beam | |
topk_log_probs = topk_log_probs / (state.cur_len**length_penalty) | |
beams_in_batch_are_full = jnp.broadcast_to( | |
state.is_sent_finished.all(axis=-1, keepdims=True), did_topk_just_finished.shape | |
) & (early_stopping is True) | |
add_penalty = ~did_topk_just_finished | beams_in_batch_are_full | |
topk_log_probs += add_penalty * np.array(-1.0e7) | |
# 7. Get scores, sequences, is sentence finished for next. | |
# Combine sequences, scores, and flags along the beam dimension and compare | |
# new finished sequence scores to existing finished scores and select the | |
# best from the new set of beams | |
merged_sequences = jnp.concatenate([state.sequences, topk_sequences], axis=1) | |
merged_scores = jnp.concatenate([state.scores, topk_log_probs], axis=1) | |
merged_is_sent_finished = jnp.concatenate([state.is_sent_finished, did_topk_just_finished], axis=1) | |
topk_merged_indices = lax.top_k(merged_scores, k=num_beams)[1] | |
next_sequences, next_scores, next_is_sent_finished = gather_beams( | |
[merged_sequences, merged_scores, merged_is_sent_finished], topk_merged_indices, batch_size, num_beams | |
) | |
# 8. Update model kwargs. | |
# Determine the top k beam indices from the original set of all beams. | |
# With these, gather the top k beam-associated caches. | |
next_running_indices = gather_beams(topk_beam_indices, next_topk_indices, batch_size, num_beams) | |
next_cache = gather_beams(cache, next_running_indices, batch_size, num_beams) | |
model_outputs["past_key_values"] = jax.tree_util.tree_map(lambda x: flatten_beam_dim(x), next_cache) | |
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) | |
return BeamSearchState( | |
cur_len=state.cur_len + 1, | |
running_scores=next_running_scores, | |
running_sequences=next_running_sequences, | |
scores=next_scores, | |
sequences=next_sequences, | |
is_sent_finished=next_is_sent_finished, | |
model_kwargs=next_model_kwargs, | |
) | |
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU | |
if input_ids.shape[-1] > 1: | |
state = partial(beam_search_body_fn, input_ids_length=input_ids.shape[-1])(state) | |
if not trace: | |
state = self._run_loop_in_debug(beam_search_cond_fn, beam_search_body_fn, state) | |
else: | |
state = lax.while_loop(beam_search_cond_fn, beam_search_body_fn, state) | |
# Account for the edge-case where there are no finished sequences for a | |
# particular batch item. If so, return running sequences for that batch item. | |
none_finished = jnp.any(state.is_sent_finished, axis=1) | |
sequences = jnp.where(none_finished[:, None, None], state.sequences, state.running_sequences) | |
scores = jnp.where(none_finished[:, None], state.scores, state.running_scores) | |
# Take best beams for each batch (the score is sorted in descending order) | |
sequences = flatten_beam_dim(sequences[:, :num_return_sequences, :]) | |
scores = flatten_beam_dim(scores[:, :num_return_sequences]) | |
return FlaxBeamSearchOutput(sequences=sequences, scores=scores) | |