Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TF general model utils.""" | |
from __future__ import annotations | |
import functools | |
import gc | |
import inspect | |
import json | |
import os | |
import pickle | |
import re | |
import warnings | |
from collections.abc import Mapping | |
from pathlib import Path | |
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union | |
import h5py | |
import numpy as np | |
import tensorflow as tf | |
from huggingface_hub import Repository, list_repo_files | |
from keras import backend as K | |
from packaging.version import parse | |
from tensorflow.python.util.keras_deps import get_call_context_function | |
from . import DataCollatorWithPadding, DefaultDataCollator | |
from .activations_tf import get_tf_activation | |
from .configuration_utils import PretrainedConfig | |
from .dynamic_module_utils import custom_object_save | |
from .generation import GenerationConfig, TFGenerationMixin | |
from .tf_utils import ( | |
expand_1d, | |
load_attributes_from_hdf5_group, | |
save_attributes_to_hdf5_group, | |
shape_list, | |
) | |
from .utils import ( | |
SAFE_WEIGHTS_INDEX_NAME, | |
SAFE_WEIGHTS_NAME, | |
TF2_WEIGHTS_INDEX_NAME, | |
TF2_WEIGHTS_NAME, | |
TF_WEIGHTS_NAME, | |
WEIGHTS_INDEX_NAME, | |
WEIGHTS_NAME, | |
ModelOutput, | |
PushToHubMixin, | |
cached_file, | |
download_url, | |
find_labels, | |
has_file, | |
is_offline_mode, | |
is_remote_url, | |
is_safetensors_available, | |
is_tf_symbolic_tensor, | |
logging, | |
requires_backends, | |
working_or_temp_dir, | |
) | |
from .utils.hub import convert_file_size_to_int, get_checkpoint_shard_files | |
if is_safetensors_available(): | |
from safetensors import safe_open | |
from safetensors.tensorflow import save_file as safe_save_file | |
if TYPE_CHECKING: | |
from . import PreTrainedTokenizerBase | |
logger = logging.get_logger(__name__) | |
tf_logger = tf.get_logger() | |
TFModelInputType = Union[ | |
List[tf.Tensor], | |
List[np.ndarray], | |
Dict[str, tf.Tensor], | |
Dict[str, np.ndarray], | |
tf.Tensor, | |
np.ndarray, | |
] | |
def dummy_loss(y_true, y_pred): | |
if y_pred.shape.rank <= 1: | |
return y_pred | |
else: | |
reduction_axes = list(range(1, y_pred.shape.rank)) | |
return tf.reduce_mean(y_pred, axis=reduction_axes) | |
class TFModelUtilsMixin: | |
""" | |
A few utilities for `tf.keras.Model`, to be used as a mixin. | |
""" | |
def num_parameters(self, only_trainable: bool = False) -> int: | |
""" | |
Get the number of (optionally, trainable) parameters in the model. | |
Args: | |
only_trainable (`bool`, *optional*, defaults to `False`): | |
Whether or not to return only the number of trainable parameters | |
Returns: | |
`int`: The number of parameters. | |
""" | |
if only_trainable: | |
return int(sum(np.prod(w.shape.as_list()) for w in self.trainable_variables)) | |
else: | |
return self.count_params() | |
def keras_serializable(cls): | |
""" | |
Decorate a Keras Layer class to support Keras serialization. | |
This is done by: | |
1. Adding a `transformers_config` dict to the Keras config dictionary in `get_config` (called by Keras at | |
serialization time. | |
2. Wrapping `__init__` to accept that `transformers_config` dict (passed by Keras at deserialization time) and | |
convert it to a config object for the actual layer initializer. | |
3. Registering the class as a custom object in Keras (if the Tensorflow version supports this), so that it does not | |
need to be supplied in `custom_objects` in the call to `tf.keras.models.load_model`. | |
Args: | |
cls (a `tf.keras.layers.Layers subclass`): | |
Typically a `TF.MainLayer` class in this project, in general must accept a `config` argument to its | |
initializer. | |
Returns: | |
The same class object, with modifications for Keras deserialization. | |
""" | |
initializer = cls.__init__ | |
config_class = getattr(cls, "config_class", None) | |
if config_class is None: | |
raise AttributeError("Must set `config_class` to use @keras_serializable") | |
def wrapped_init(self, *args, **kwargs): | |
config = args[0] if args and isinstance(args[0], PretrainedConfig) else kwargs.pop("config", None) | |
if isinstance(config, dict): | |
config = config_class.from_dict(config) | |
initializer(self, config, *args, **kwargs) | |
elif isinstance(config, PretrainedConfig): | |
if len(args) > 0: | |
initializer(self, *args, **kwargs) | |
else: | |
initializer(self, config, *args, **kwargs) | |
else: | |
raise ValueError("Must pass either `config` (PretrainedConfig) or `config` (dict)") | |
self._config = config | |
self._kwargs = kwargs | |
cls.__init__ = wrapped_init | |
if not hasattr(cls, "get_config"): | |
raise TypeError("Only use @keras_serializable on tf.keras.layers.Layer subclasses") | |
if hasattr(cls.get_config, "_is_default"): | |
def get_config(self): | |
cfg = super(cls, self).get_config() | |
cfg["config"] = self._config.to_dict() | |
cfg.update(self._kwargs) | |
return cfg | |
cls.get_config = get_config | |
cls._keras_serializable = True | |
if hasattr(tf.keras.utils, "register_keras_serializable"): | |
cls = tf.keras.utils.register_keras_serializable()(cls) | |
return cls | |
class TFCausalLanguageModelingLoss: | |
""" | |
Loss function suitable for causal language modeling (CLM), that is, the task of guessing the next token. | |
<Tip> | |
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. | |
</Tip> | |
""" | |
def hf_compute_loss(self, labels, logits): | |
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( | |
from_logits=True, reduction=tf.keras.losses.Reduction.NONE | |
) | |
if self.config.tf_legacy_loss: | |
# make sure only labels that are not equal to -100 affect the loss | |
active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100) | |
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss) | |
labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss) | |
return loss_fn(labels, reduced_logits) | |
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway | |
unmasked_loss = loss_fn(tf.nn.relu(labels), logits) | |
# make sure only labels that are not equal to -100 affect the loss | |
loss_mask = tf.cast(labels != -100, dtype=unmasked_loss.dtype) | |
masked_loss = unmasked_loss * loss_mask | |
reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(loss_mask) | |
return tf.reshape(reduced_masked_loss, (1,)) | |
class TFQuestionAnsweringLoss: | |
""" | |
Loss function suitable for question answering. | |
""" | |
def hf_compute_loss(self, labels, logits): | |
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( | |
from_logits=True, reduction=tf.keras.losses.Reduction.NONE | |
) | |
start_loss = loss_fn(labels["start_position"], logits[0]) | |
end_loss = loss_fn(labels["end_position"], logits[1]) | |
return (start_loss + end_loss) / 2.0 | |
class TFTokenClassificationLoss: | |
""" | |
Loss function suitable for token classification. | |
<Tip> | |
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. | |
</Tip> | |
""" | |
def hf_compute_loss(self, labels, logits): | |
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( | |
from_logits=True, reduction=tf.keras.losses.Reduction.NONE | |
) | |
if tf.executing_eagerly(): # Data-dependent conditionals are forbidden in XLA | |
if tf.math.reduce_any(labels == -1): | |
tf.print("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.") | |
if self.config.tf_legacy_loss: | |
# make sure only labels that are not equal to -100 | |
# are taken into account as loss | |
if tf.math.reduce_any(labels == -1): | |
tf.print("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.") | |
active_loss = tf.reshape(labels, (-1,)) != -1 | |
else: | |
active_loss = tf.reshape(labels, (-1,)) != -100 | |
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss) | |
labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss) | |
return loss_fn(labels, reduced_logits) | |
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway | |
unmasked_loss = loss_fn(tf.nn.relu(labels), logits) | |
# make sure only labels that are not equal to -100 or -1 | |
# are taken into account as loss | |
loss_mask = tf.cast(labels >= 0, dtype=unmasked_loss.dtype) | |
# Avoid possible division by zero later | |
# Masked positions will have a loss of NaN because -100 and -1 are not valid labels | |
masked_loss = unmasked_loss * loss_mask | |
reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(loss_mask) | |
return tf.reshape(reduced_masked_loss, (1,)) | |
class TFSequenceClassificationLoss: | |
""" | |
Loss function suitable for sequence classification. | |
""" | |
def hf_compute_loss(self, labels, logits): | |
if logits.shape.rank == 1 or logits.shape[1] == 1: | |
loss_fn = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE) | |
if labels.shape.rank == 1: | |
# MeanSquaredError returns a scalar loss if the labels are 1D, so avoid that | |
labels = tf.expand_dims(labels, axis=-1) | |
else: | |
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( | |
from_logits=True, reduction=tf.keras.losses.Reduction.NONE | |
) | |
return loss_fn(labels, logits) | |
class TFMultipleChoiceLoss: | |
"""Loss function suitable for multiple choice tasks.""" | |
def hf_compute_loss(self, labels, logits): | |
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( | |
from_logits=True, reduction=tf.keras.losses.Reduction.NONE | |
) | |
return loss_fn(labels, logits) | |
class TFMaskedLanguageModelingLoss(TFCausalLanguageModelingLoss): | |
""" | |
Loss function suitable for masked language modeling (MLM), that is, the task of guessing the masked tokens. | |
<Tip> | |
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. | |
</Tip> | |
""" | |
class TFNextSentencePredictionLoss: | |
""" | |
Loss function suitable for next sentence prediction (NSP), that is, the task of guessing the next sentence. | |
<Tip> | |
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. | |
</Tip> | |
""" | |
def hf_compute_loss(self, labels, logits): | |
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( | |
from_logits=True, reduction=tf.keras.losses.Reduction.NONE | |
) | |
if self.config.tf_legacy_loss: | |
# make sure only labels that are not equal to -100 | |
# are taken into account as loss | |
next_sentence_active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100) | |
next_sentence_reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, 2)), next_sentence_active_loss) | |
next_sentence_label = tf.boolean_mask(tf.reshape(labels, (-1,)), next_sentence_active_loss) | |
return loss_fn(next_sentence_label, next_sentence_reduced_logits) | |
# make sure only labels that are not equal to -100 | |
# are taken into account as loss | |
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway | |
unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels), y_pred=logits) | |
ns_loss_mask = tf.cast(labels != -100, dtype=unmasked_ns_loss.dtype) | |
# Just zero out samples where label is -100, no reduction | |
masked_ns_loss = unmasked_ns_loss * ns_loss_mask | |
return masked_ns_loss | |
def booleans_processing(config, **kwargs): | |
""" | |
Process the input booleans of each model. | |
Args: | |
config ([`PretrainedConfig`]): | |
The config of the running model. | |
**kwargs: | |
The boolean parameters | |
Returns: | |
A dictionary with the proper values for each boolean | |
""" | |
final_booleans = {} | |
# Pure conv models (such as ConvNext) do not have `output_attentions`. If the signature has | |
# `output_attentions`, it will be present here in `kwargs`, even if unset (in that case, as `None`) | |
if "output_attentions" in kwargs: | |
final_booleans["output_attentions"] = ( | |
kwargs["output_attentions"] if kwargs["output_attentions"] is not None else config.output_attentions | |
) | |
final_booleans["output_hidden_states"] = ( | |
kwargs["output_hidden_states"] if kwargs["output_hidden_states"] is not None else config.output_hidden_states | |
) | |
final_booleans["return_dict"] = kwargs["return_dict"] if kwargs["return_dict"] is not None else config.return_dict | |
if "use_cache" in kwargs: | |
final_booleans["use_cache"] = ( | |
kwargs["use_cache"] if kwargs["use_cache"] is not None else getattr(config, "use_cache", None) | |
) | |
return final_booleans | |
def unpack_inputs(func): | |
""" | |
Decorator that processes the inputs to a Keras layer, passing them to the layer as keyword arguments. This enables | |
downstream use of the inputs by their variable name, even if they arrive packed as a dictionary in the first input | |
(common case in Keras). | |
Args: | |
func (`callable`): | |
The callable function of the TensorFlow model. | |
Returns: | |
A callable that wraps the original `func` with the behavior described above. | |
""" | |
original_signature = inspect.signature(func) | |
def run_call_with_unpacked_inputs(self, *args, **kwargs): | |
# isolates the actual `**kwargs` for the decorated function | |
kwargs_call = {key: val for key, val in kwargs.items() if key not in dict(original_signature.parameters)} | |
fn_args_and_kwargs = {key: val for key, val in kwargs.items() if key not in kwargs_call} | |
fn_args_and_kwargs.update({"kwargs_call": kwargs_call}) | |
# move any arg into kwargs, if they exist | |
fn_args_and_kwargs.update(dict(zip(func.__code__.co_varnames[1:], args))) | |
# Encoder Decoder models delegate the application of the configuration options to their inner models. | |
if "EncoderDecoder" in self.__class__.__name__: | |
config = None | |
else: | |
config = self.config | |
unpacked_inputs = input_processing(func, config, **fn_args_and_kwargs) | |
return func(self, **unpacked_inputs) | |
# Keras enforces the first layer argument to be passed, and checks it through `inspect.getfullargspec()`. This | |
# function does not follow wrapper chains (i.e. ignores `functools.wraps()`), meaning that without the line below | |
# Keras would attempt to check the first argument against the literal signature of the wrapper. | |
run_call_with_unpacked_inputs.__signature__ = original_signature | |
return run_call_with_unpacked_inputs | |
def input_processing(func, config, **kwargs): | |
""" | |
Process the input of each TensorFlow model including the booleans. In case of a list of symbolic inputs, each input | |
has to be named accordingly to the parameters name, i.e. `input_ids = tf.keras.Input(shape=(128,), dtype='int32', | |
name="input_ids")` otherwise the order of the tensors will not be guaranteed during the training. | |
Args: | |
func (`callable`): | |
The callable function of the TensorFlow model. | |
config ([`PretrainedConfig`]): | |
The config of the running model. | |
**kwargs: | |
The inputs of the model. | |
Returns: | |
Two lists, one for the missing layers, and another one for the unexpected layers. | |
""" | |
signature = dict(inspect.signature(func).parameters) | |
has_kwargs = bool(signature.pop("kwargs", None)) | |
signature.pop("self", None) | |
parameter_names = list(signature.keys()) | |
main_input_name = parameter_names[0] | |
main_input = kwargs.pop(main_input_name, None) | |
output = {} | |
allowed_types = (tf.Tensor, bool, int, ModelOutput, tuple, list, dict, np.ndarray) | |
if "inputs" in kwargs["kwargs_call"]: | |
warnings.warn( | |
"The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.", | |
FutureWarning, | |
) | |
output["input_ids"] = kwargs["kwargs_call"].pop("inputs") | |
if "decoder_cached_states" in kwargs["kwargs_call"]: | |
warnings.warn( | |
"The `decoder_cached_states` argument is deprecated and will be removed in a future version, use" | |
" `past_key_values` instead.", | |
FutureWarning, | |
) | |
output["past_key_values"] = kwargs["kwargs_call"].pop("decoder_cached_states") | |
if "past" in kwargs["kwargs_call"] and "past_key_values" in parameter_names: | |
warnings.warn( | |
"The `past` argument is deprecated and will be removed in a future version, use `past_key_values`" | |
" instead.", | |
FutureWarning, | |
) | |
kwargs["past_key_values"] = kwargs["kwargs_call"].pop("past") | |
elif "past_key_values" in kwargs["kwargs_call"] and "past" in parameter_names: | |
kwargs["past"] = kwargs["kwargs_call"].pop("past_key_values") | |
if has_kwargs: | |
output["kwargs"] = kwargs.pop("kwargs_call", {}) | |
else: | |
if len(kwargs["kwargs_call"]) > 0: | |
raise ValueError( | |
"The following keyword arguments are not supported by this model:" | |
f" {list(kwargs['kwargs_call'].keys())}." | |
) | |
kwargs.pop("kwargs_call") | |
for k, v in kwargs.items(): | |
if isinstance(v, allowed_types) or tf.is_tensor(v) or v is None: | |
output[k] = v | |
else: | |
raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.") | |
if isinstance(main_input, (tuple, list)): | |
for i, input in enumerate(main_input): | |
# EagerTensors don't allow to use the .name property so we check for a real Tensor | |
if is_tf_symbolic_tensor(input): | |
# Tensor names have always the pattern `name:id` then we check only the | |
# `name` part | |
tensor_name = input.name.split(":")[0] | |
if tensor_name in parameter_names: | |
output[tensor_name] = input | |
else: | |
output[parameter_names[i]] = input | |
elif isinstance(input, allowed_types) or input is None: | |
output[parameter_names[i]] = input | |
else: | |
raise ValueError( | |
f"Data of type {type(input)} is not allowed only {allowed_types} is accepted for" | |
f" {parameter_names[i]}." | |
) | |
elif isinstance(main_input, Mapping): | |
if "inputs" in main_input: | |
warnings.warn( | |
"The `inputs` argument is deprecated and will be removed in a future version, use `input_ids`" | |
" instead.", | |
FutureWarning, | |
) | |
output["input_ids"] = main_input.pop("inputs") | |
if "decoder_cached_states" in main_input: | |
warnings.warn( | |
"The `decoder_cached_states` argument is deprecated and will be removed in a future version, use" | |
" `past_key_values` instead.", | |
FutureWarning, | |
) | |
output["past_key_values"] = main_input.pop("decoder_cached_states") | |
for k, v in dict(main_input).items(): | |
if isinstance(v, allowed_types) or v is None: | |
output[k] = v | |
elif k not in parameter_names and "args" not in parameter_names: | |
logger.warning( | |
f"The parameter {k} does not belongs to the parameter list {parameter_names} and will be ignored." | |
) | |
continue | |
else: | |
raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.") | |
else: | |
if tf.is_tensor(main_input) or main_input is None: | |
output[main_input_name] = main_input | |
else: | |
raise ValueError( | |
f"Data of type {type(main_input)} is not allowed only {allowed_types} is accepted for" | |
f" {main_input_name}." | |
) | |
# Populates any unspecified argument with their default value, according to the signature. | |
for name in parameter_names: | |
if name not in list(output.keys()) and name != "args": | |
output[name] = kwargs.pop(name, signature[name].default) | |
# When creating a SavedModel TF calls the method with LayerCall.__call__(args, **kwargs) | |
# So to respect the proper output we have to add this exception | |
if "args" in output: | |
if output["args"] is not None and is_tf_symbolic_tensor(output["args"]): | |
tensor_name = output["args"].name.split(":")[0] | |
output[tensor_name] = output["args"] | |
else: | |
# `args` in this case is always the first parameter, then `input_ids` | |
output["input_ids"] = output["args"] | |
del output["args"] | |
if "kwargs" in output: | |
del output["kwargs"] | |
cast_output = {} | |
for key, val in output.items(): | |
if isinstance(val, tf.Tensor) and val.dtype == tf.int64: | |
cast_output[key] = tf.cast(val, tf.int32) | |
elif isinstance(val, np.ndarray) and val.dtype == np.int64: | |
cast_output[key] = val.astype(np.int32) | |
else: | |
cast_output[key] = val | |
output = cast_output | |
del cast_output | |
if config is not None: | |
boolean_dict = { | |
k: v | |
for k, v in output.items() | |
if k in ["return_dict", "output_attentions", "output_hidden_states", "use_cache"] | |
} | |
output.update( | |
booleans_processing( | |
config=config, | |
**boolean_dict, | |
) | |
) | |
return output | |
def dtype_byte_size(dtype): | |
""" | |
Returns the size (in bytes) occupied by one parameter of type `dtype`. | |
Example: | |
```py | |
>>> dtype_byte_size(tf.float32) | |
4 | |
``` | |
""" | |
if dtype == tf.bool: | |
return 1 / 8 | |
bit_search = re.search(r"[^\d](\d+)$", dtype.name) | |
if bit_search is None: | |
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") | |
bit_size = int(bit_search.groups()[0]) | |
return bit_size // 8 | |
def format_weight_name(name, _prefix=None): | |
if "model." not in name and len(name.split("/")) > 1: | |
name = "/".join(name.split("/")[1:]) | |
if _prefix is not None: | |
name = _prefix + "/" + name | |
return name | |
def tf_shard_checkpoint(weights, max_shard_size="10GB"): | |
""" | |
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a | |
given size. | |
The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no | |
optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the | |
limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], | |
[6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB]. | |
<Tip warning={true}> | |
If one of the model's weight is bigger that `max_shard_size`, it will end up in its own sub-checkpoint which will | |
have a size greater than `max_shard_size`. | |
</Tip> | |
Args: | |
weights (`Dict[str, tf.RessourceVariable]`): The list of tf.RessourceVariable of a model to save. | |
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): | |
The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit | |
(like `"5MB"`). | |
""" | |
max_shard_size = convert_file_size_to_int(max_shard_size) | |
sharded_state_dicts = [] | |
current_block = [] | |
current_block_size = 0 | |
total_size = 0 | |
for item in weights: | |
weight_size = item.numpy().size * dtype_byte_size(item.dtype) | |
# If this weight is going to tip up over the maximal size, we split. | |
if current_block_size + weight_size > max_shard_size: | |
sharded_state_dicts.append(current_block) | |
current_block = [] | |
current_block_size = 0 | |
current_block.append(item) | |
current_block_size += weight_size | |
total_size += weight_size | |
# Add the last block | |
sharded_state_dicts.append(current_block) | |
# If we only have one shard, we return it | |
if len(sharded_state_dicts) == 1: | |
return {TF2_WEIGHTS_NAME: sharded_state_dicts[0]}, None | |
# Otherwise, let's build the index | |
weight_map = {} | |
shards = {} | |
for idx, shard in enumerate(sharded_state_dicts): | |
shard_file = TF2_WEIGHTS_NAME.replace(".h5", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.h5") | |
shards[shard_file] = shard | |
for weight in shard: | |
weight_name = weight.name | |
weight_map[weight_name] = shard_file | |
# Add the metadata | |
metadata = {"total_size": total_size} | |
index = {"metadata": metadata, "weight_map": weight_map} | |
return shards, index | |
def load_tf_sharded_weights(model, shard_files, ignore_mismatched_sizes=False, strict=False, _prefix=None): | |
""" | |
This is the same as `load_tf_weights` but for a sharded checkpoint. Detect missing and unexpected layers and load | |
the TF weights from the shard file accordingly to their names and shapes. | |
This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being | |
loaded in the model. | |
Args: | |
model (`tf.keras.models.Model`): The model in which to load the checkpoint. | |
shard_files (`str` or `os.PathLike`): A list containing the sharded checkpoint names. | |
ignore_mismatched_sizes`bool`, *optional`, defaults to `True`): | |
Whether or not to ignore the mismatch between the sizes | |
strict (`bool`, *optional*, defaults to `True`): | |
Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint. | |
Returns: | |
Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the | |
mismatched layers. | |
""" | |
# Load the index | |
unexpected_keys = set() | |
saved_keys = set() | |
mismatched_keys = set() | |
# Since TF adds the name of the class to its weights, and uses the index and not the name of the layer to load | |
# the weight, we have to get rid of the first prefix of the name of the layer. | |
model_keys = set() | |
model_layer_map = {} | |
for i, k in enumerate(model.weights): | |
layer_name = k.name | |
if _prefix is not None and layer_name.startswith(_prefix): | |
layer_name = layer_name[len(_prefix) :] | |
layer_name = layer_name.lstrip("/") | |
if not ("model." in layer_name or len(layer_name.split("/")) == 1): | |
layer_name = "/".join(layer_name.split("/")[1:]) | |
model_keys.add(layer_name) | |
model_layer_map[layer_name] = i | |
for shard_file in shard_files: | |
saved_weight_names_set, unexpected_keys_set, mismatched_keys_set = load_tf_shard( | |
model, | |
model_layer_map, | |
shard_file, | |
ignore_mismatched_sizes=ignore_mismatched_sizes, | |
_prefix=_prefix, | |
) | |
saved_keys.update(saved_weight_names_set) | |
unexpected_keys.update(unexpected_keys_set) | |
mismatched_keys.update(mismatched_keys_set) | |
gc.collect() | |
missing_keys = model_keys - saved_keys | |
if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0): | |
error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}" | |
if len(missing_keys) > 0: | |
str_missing_keys = ",".join([f'"{k}"' for k in missing_keys]) | |
error_message += f"\nMissing key(s): {str_missing_keys}." | |
if len(unexpected_keys) > 0: | |
str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys]) | |
error_message += f"\nMissing key(s): {str_unexpected_keys}." | |
raise RuntimeError(error_message) | |
return missing_keys, unexpected_keys, mismatched_keys | |
def load_tf_shard(model, model_layer_map, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None): | |
""" | |
Loads a shard from a sharded checkpoint file. Handles the missing keys and unexpected keys. | |
Args: | |
model (`tf.keras.models.Model`): Model in which the weights are loaded | |
model_layer_map (`Dict`): A dictionary mapping the layer name to the index of the layer in the model. | |
resolved_archive_file (`str`): Path to the checkpoint file from which the weights will be loaded | |
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): Whether to ignore the mismatched keys | |
Returns: | |
`tf.keras.models.Model`: Three lists, one for the layers that were found and succesfully restored (from the | |
shard file), one for the mismatched layers, and another one for the unexpected layers. | |
""" | |
saved_weight_names_set = set() | |
saved_weights = {} | |
mismatched_keys = set() | |
unexpected_keys = set() | |
# Read the H5 file | |
try: | |
with h5py.File(resolved_archive_file, "r") as sharded_checkpoint_file: | |
# Retrieve the name of each layer from the H5 file | |
saved_h5_model_layers_name = set(load_attributes_from_hdf5_group(sharded_checkpoint_file, "layer_names")) | |
weight_value_tuples = [] | |
# Compute missing and unexpected sub layers | |
# Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...] | |
for layer_name in saved_h5_model_layers_name: | |
h5_layer_object = sharded_checkpoint_file[layer_name] | |
saved_weights[layer_name] = np.asarray(h5_layer_object) | |
saved_weight_names_set.add(layer_name) | |
if layer_name not in model_layer_map: | |
unexpected_keys.add(layer_name) | |
else: | |
symbolic_weight = model.weights[model_layer_map[layer_name]] | |
saved_weight_value = saved_weights[layer_name] | |
# If the current weight is found | |
if saved_weight_value is not None: | |
# Check if the shape of the current weight and the one from the H5 file are different | |
if K.int_shape(symbolic_weight) != saved_weight_value.shape: | |
# If yes we reshape the weight from the H5 file accordingly to the current weight | |
# If the two shapes are not compatible we raise an issue | |
try: | |
array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight)) | |
except ValueError as e: | |
if ignore_mismatched_sizes: | |
mismatched_keys.add( | |
(layer_name, saved_weight_value.shape, K.int_shape(symbolic_weight)) | |
) | |
continue | |
else: | |
raise e | |
else: | |
array = saved_weight_value | |
# We create the tuple that will be loaded and add it to the final list | |
weight_value_tuples.append((symbolic_weight, array)) | |
K.batch_set_value(weight_value_tuples) | |
return saved_weight_names_set, unexpected_keys, mismatched_keys | |
except Exception as e: | |
try: | |
with open(resolved_archive_file) as f: | |
if f.read().startswith("version"): | |
raise OSError( | |
"You seem to have cloned a repository without having git-lfs installed. Please install " | |
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder " | |
"you cloned." | |
) | |
else: | |
raise ValueError( | |
f"Unable to locate the file {resolved_archive_file} which is necessary to load this pretrained" | |
" model. Make sure you have saved the model properly." | |
) from e | |
except (UnicodeDecodeError, ValueError): | |
raise OSError( | |
f"Unable to load weights from TF checkpoint file for '{resolved_archive_file}' " | |
f"at '{resolved_archive_file}'. " | |
"If you tried to load a TF model from a sharded checkpoint, you should try converting the model" | |
"by loading it in pytorch and saving it localy. A convertion script should be realeased soon." | |
) | |
def load_tf_weights(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None): | |
""" | |
Detect missing and unexpected layers and load the TF weights from the shard file accordingly to their names and | |
shapes. | |
Args: | |
model (`tf.keras.models.Model`): | |
The model to load the weights into. | |
resolved_archive_file (`str`): | |
The location of the H5 file. | |
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): | |
Whether or not to ignore weights with shapes that don't match between the checkpoint of the model. | |
Returns: | |
Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the | |
mismatched layers. | |
""" | |
if resolved_archive_file.endswith(".safetensors"): | |
load_function = load_tf_weights_from_safetensors | |
else: | |
load_function = load_tf_weights_from_h5 | |
return load_function( | |
model, resolved_archive_file, ignore_mismatched_sizes=ignore_mismatched_sizes, _prefix=_prefix | |
) | |
def load_tf_weights_from_h5(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None): | |
mismatched_layers = [] | |
# Read the H5 file | |
with h5py.File(resolved_archive_file, "r") as sharded_checkpoint_file: | |
# Retrieve the name of each layer from the H5 file | |
saved_h5_model_layers_name = set(load_attributes_from_hdf5_group(sharded_checkpoint_file, "layer_names")) | |
# Find the missing layers from the high level list of layers | |
missing_layers = list({layer.name for layer in model.layers} - saved_h5_model_layers_name) | |
# Find the unexpected layers from the high level list of layers | |
unexpected_layers = list(saved_h5_model_layers_name - {layer.name for layer in model.layers}) | |
saved_weight_names_set = set() | |
symbolic_weights_names = set() | |
weight_value_tuples = [] | |
# Compute missing and unexpected sub layers | |
# Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...] | |
for layer in model.layers: | |
# if layer_name from the H5 file belongs to the layers from the instantiated model | |
if layer.name in saved_h5_model_layers_name: | |
# Get the H5 layer object from its name | |
h5_layer_object = sharded_checkpoint_file[layer.name] | |
# Get all the weights as a list from the layer object | |
symbolic_weights = layer.trainable_weights + layer.non_trainable_weights | |
saved_weights = {} | |
# Create a dict from the H5 saved model that looks like {"weight_name": weight_value} | |
# And a set with only the names | |
for weight_name in load_attributes_from_hdf5_group(h5_layer_object, "weight_names"): | |
# TF names always start with the model name so we ignore it | |
name = "/".join(weight_name.split("/")[1:]) | |
if _prefix is not None: | |
name = _prefix + "/" + name | |
saved_weights[name] = np.asarray(h5_layer_object[weight_name]) | |
# Add the updated name to the final list for computing missing/unexpected values | |
saved_weight_names_set.add(name) | |
# Loop over each weights from the instantiated model and compare with the weights from the H5 file | |
for symbolic_weight in symbolic_weights: | |
# TF names always start with the model name so we ignore it | |
if _prefix is not None: | |
delimeter = len(_prefix.split("/")) | |
symbolic_weight_name = "/".join( | |
symbolic_weight.name.split("/")[:delimeter] | |
+ symbolic_weight.name.split("/")[delimeter + 1 :] | |
) | |
else: | |
symbolic_weight_name = "/".join(symbolic_weight.name.split("/")[1:]) | |
# here we check if the current weight is among the weights from the H5 file | |
# If yes, get the weight_value of the corresponding weight from the H5 file | |
# If not, make the value to None | |
saved_weight_value = saved_weights.get(symbolic_weight_name, None) | |
# Retrocompatibility patch: some embeddings are stored with the weights name (e.g. Bart's | |
# `model.shared/embeddings:0` are stored as `model.shared/weights:0`) | |
if saved_weight_value is None and symbolic_weight_name.endswith("embeddings:0"): | |
symbolic_weight_name = symbolic_weight_name[:-12] + "weight:0" | |
saved_weight_value = saved_weights.get(symbolic_weight_name, None) | |
# Add the updated name to the final list for computing missing/unexpected values | |
symbolic_weights_names.add(symbolic_weight_name) | |
# If the current weight is found | |
if saved_weight_value is not None: | |
# Check if the shape of the current weight and the one from the H5 file are different | |
if K.int_shape(symbolic_weight) != saved_weight_value.shape: | |
# If yes we reshape the weight from the H5 file accordingly to the current weight | |
# If the two shapes are not compatible we raise an issue | |
try: | |
array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight)) | |
except ValueError as e: | |
if ignore_mismatched_sizes: | |
mismatched_layers.append( | |
(symbolic_weight_name, saved_weight_value.shape, K.int_shape(symbolic_weight)) | |
) | |
continue | |
else: | |
raise e | |
else: | |
array = saved_weight_value | |
# We create the tuple that will be loaded and add it to the final list | |
weight_value_tuples.append((symbolic_weight, array)) | |
# Load all the weights | |
K.batch_set_value(weight_value_tuples) | |
# Compute the missing and unexpected layers | |
missing_layers.extend(list(symbolic_weights_names - saved_weight_names_set)) | |
unexpected_layers.extend(list(saved_weight_names_set - symbolic_weights_names)) | |
return missing_layers, unexpected_layers, mismatched_layers | |
def load_tf_weights_from_safetensors(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None): | |
# Read the safetensors file | |
with safe_open(resolved_archive_file, framework="tf") as safetensors_archive: | |
mismatched_layers = [] | |
weight_names = [format_weight_name(w.name, _prefix=_prefix) for w in model.weights] | |
loaded_weight_names = list(safetensors_archive.keys()) | |
# Find the missing layers from the high level list of layers | |
missing_layers = list(set(weight_names) - set(loaded_weight_names)) | |
# Find the unexpected layers from the high level list of layers | |
unexpected_layers = list(set(loaded_weight_names) - set(weight_names)) | |
for weight in model.weights: | |
weight_name = format_weight_name(weight.name, _prefix=_prefix) | |
if weight_name in loaded_weight_names: | |
weight_value = safetensors_archive.get_tensor(weight_name) | |
# Check if the shape of the current weight and the one from the H5 file are different | |
if K.int_shape(weight) != weight_value.shape: | |
# If yes we reshape the weight from the H5 file accordingly to the current weight | |
# If the two shapes are not compatible we raise an issue | |
try: | |
weight_value = tf.reshape(weight_value, K.int_shape(weight)) | |
except ValueError as e: | |
if ignore_mismatched_sizes: | |
mismatched_layers.append((weight_name, weight_value.shape, K.int_shape(weight))) | |
continue | |
else: | |
raise e | |
K.set_value(weight, weight_value) # weight.assign() might break if weight is a DTensor | |
return missing_layers, unexpected_layers, mismatched_layers | |
def init_copy_embeddings(old_embeddings, new_num_tokens): | |
r""" | |
This function aims to reduce the embeddings in case new_num_tokens < old_num_tokens or to pad with -1 in case | |
new_num_tokens > old_num_tokens. A mask is also computed in order to know which weight in the embeddings should be | |
kept or not. Example: | |
- if new_num_tokens=5 and old_num_tokens=4 and old_embeddings=[w1,w2,w3,w4] | |
- mask=[True,True,True,True,False] and current_weights=[w1,w2,w3,w4,-1] | |
- if new_num_tokens=4 and old_num_tokens=5 and old_embeddings=[w1,w2,w3,w4,w5] | |
- mask=[True,True,True,True] and current_weights=[w1,w2,w3,w4] | |
""" | |
old_num_tokens, old_embedding_dim = shape_list(old_embeddings) | |
size_diff = new_num_tokens - old_num_tokens | |
# initialize new embeddings | |
# Copy token embeddings from the previous ones | |
if tf.math.greater(size_diff, 0): | |
# if the new size is greater than the old one, we extend the current embeddings with a padding until getting new size | |
# and we create a mask to properly identify the padded values and be replaced by the values of the newly created | |
# embeddings | |
current_weights = tf.pad( | |
old_embeddings.value(), tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=-1 | |
) | |
num_tokens_to_copy = min(old_num_tokens, new_num_tokens) | |
mask = tf.fill(tf.convert_to_tensor([num_tokens_to_copy, 1]), True) | |
mask = tf.pad(mask, tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=False) | |
else: | |
# if the new size if lower than the old one, we take the current embeddings until the new size | |
current_weights = tf.slice( | |
old_embeddings.value(), | |
tf.convert_to_tensor([0, 0]), | |
tf.convert_to_tensor([new_num_tokens, old_embedding_dim]), | |
) | |
mask = tf.fill(tf.convert_to_tensor([new_num_tokens, 1]), True) | |
return mask, current_weights | |
class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushToHubMixin): | |
r""" | |
Base class for all TF models. | |
[`TFPreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading, | |
downloading and saving models as well as a few methods common to all models to: | |
- resize the input embeddings, | |
- prune heads in the self-attention heads. | |
Class attributes (overridden by derived classes): | |
- **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class | |
for this model architecture. | |
- **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived | |
classes of the same architecture adding modules on top of the base model. | |
- **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP | |
models, `pixel_values` for vision models and `input_values` for speech models). | |
""" | |
config_class = None | |
base_model_prefix = "" | |
main_input_name = "input_ids" | |
_auto_class = None | |
_using_dummy_loss = None | |
_label_to_output_map = None | |
# a list of re pattern of tensor names to ignore from the model when loading the model weights | |
# (and avoid unnecessary warnings). | |
_keys_to_ignore_on_load_missing = None | |
# a list of re pattern of tensor names to ignore from the weights when loading the model weights | |
# (and avoid unnecessary warnings). | |
_keys_to_ignore_on_load_unexpected = None | |
_requires_load_weight_prefix = False | |
def dummy_inputs(self) -> Dict[str, tf.Tensor]: | |
""" | |
Dummy inputs to build the network. | |
Returns: | |
`Dict[str, tf.Tensor]`: The dummy inputs. | |
""" | |
dummies = {} | |
for key, spec in self.input_signature.items(): | |
# 2 is the most correct arbitrary size. I will not be taking questions | |
dummy_shape = [dim if dim is not None else 2 for dim in spec.shape] | |
if spec.shape[0] is None: | |
# But let's make the batch size 1 to save memory anyway | |
dummy_shape[0] = 1 | |
dummies[key] = tf.ones(shape=dummy_shape, dtype=spec.dtype) | |
if key == "token_type_ids": | |
# Some models have token_type_ids but with a vocab_size of 1 | |
dummies[key] = tf.zeros_like(dummies[key]) | |
if self.config.add_cross_attention and "encoder_hidden_states" in inspect.signature(self.call).parameters: | |
if "encoder_hidden_states" not in dummies: | |
if self.main_input_name == "input_ids": | |
dummies["encoder_hidden_states"] = tf.ones( | |
shape=(1, 2, self.config.hidden_size), dtype=tf.float32, name="encoder_hidden_states" | |
) | |
else: | |
raise NotImplementedError( | |
"Model has cross-attention but we couldn't infer the shape for the encoder hidden states. Please manually override dummy_inputs!" | |
) | |
return dummies | |
def framework(self) -> str: | |
""" | |
:str: Identifies that this is a TensorFlow model. | |
""" | |
return "tf" | |
def build(self, input_shape=None): | |
call_context = get_call_context_function() | |
if self.built or call_context().in_call: | |
self.built = True | |
else: | |
self.built = True | |
# Set the serving spec quickly to ensure that Keras doesn't use the specific dummy input shapes as the spec | |
# Setting it in build() allows users to override the shape when loading a non-pretrained model from config | |
self._set_save_spec(self.input_signature) | |
self(self.dummy_inputs, training=False) | |
def __init__(self, config, *inputs, **kwargs): | |
super().__init__(*inputs, **kwargs) | |
if not isinstance(config, PretrainedConfig): | |
raise ValueError( | |
f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class " | |
"`PretrainedConfig`. To create a model from a pretrained model use " | |
f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`" | |
) | |
# Save config and origin of the pretrained weights if given in model | |
self.config = config | |
self.name_or_path = config.name_or_path | |
self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None | |
def get_config(self): | |
return self.config.to_dict() | |
def from_config(cls, config, **kwargs): | |
if isinstance(config, PretrainedConfig): | |
return cls._from_config(config, **kwargs) | |
return cls._from_config(cls.config_class.from_dict(config, **kwargs)) | |
def _from_config(cls, config, **kwargs): | |
""" | |
All context managers that the model should be initialized under go here. | |
""" | |
return cls(config, **kwargs) | |
def get_head_mask(self, head_mask: tf.Tensor | None, num_hidden_layers: int) -> tf.Tensor: | |
""" | |
Prepare the head mask if needed. | |
Args: | |
head_mask (`tf.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*): | |
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard). | |
num_hidden_layers (`int`): | |
The number of hidden layers in the model. | |
Returns: | |
`tf.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with | |
`[None]` for each layer. | |
""" | |
if head_mask is not None: | |
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) | |
else: | |
head_mask = [None] * num_hidden_layers | |
return head_mask | |
def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers): | |
"""-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]""" | |
if head_mask.shape.rank == 1: | |
head_mask = head_mask[None, None, :, None, None] | |
head_mask = tf.repeat(head_mask, repeats=num_hidden_layers, axis=0) | |
elif head_mask.shape.rank == 2: | |
head_mask = head_mask[:, None, :, None, None] | |
assert head_mask.shape.rank == 5, f"head_mask.dim != 5, instead {head_mask.dim()}" | |
head_mask = tf.cast(head_mask, tf.float32) # switch to float if need + fp16 compatibility | |
return head_mask | |
def serving(self, inputs): | |
""" | |
Args: | |
Method used for serving the model. Does not have a specific signature, but will be specialized as concrete | |
functions when saving with `save_pretrained`. | |
inputs (`Dict[str, tf.Tensor]`): | |
The input of the saved model as a dictionary of tensors. | |
""" | |
output = self.call(inputs) | |
return self.serving_output(output) | |
def eager_serving(self, inputs): | |
""" | |
Method used for serving the model. This method is deprecated, and will be removed. | |
Args: | |
inputs (`Dict[str, tf.Tensor]`): | |
The input of the saved model as a dictionary of tensors. | |
""" | |
warnings.warn( | |
"The function `eager_serving` is deprecated and will be removed in version 4.32.0 of Transformers", | |
FutureWarning, | |
) | |
output = self.call(inputs) | |
return self.serving_output(output) | |
def input_signature(self) -> Dict[str, tf.TensorSpec]: | |
""" | |
This property should return a dict mapping input names to tf.TensorSpec objects, representing the expected | |
shape and dtype for model inputs. It is used for both serving and for generating the dummy inputs used to build | |
the model. | |
""" | |
model_inputs = list(inspect.signature(self.call).parameters) | |
sig = {} | |
if "input_ids" in model_inputs: | |
if self.__class__.__name__.endswith("ForMultipleChoice"): | |
text_dims = 3 | |
else: | |
text_dims = 2 | |
for input_name in ( | |
"input_ids", | |
"attention_mask", | |
"token_type_ids", | |
"decoder_input_ids", | |
"decoder_attention_mask", | |
): | |
if input_name in model_inputs: | |
sig[input_name] = tf.TensorSpec([None] * text_dims, tf.int32, name=input_name) | |
if "pixel_values" in model_inputs: | |
pixel_values_shape = [None, None, None, None] | |
if hasattr(self.config, "vision_config"): | |
vision_config = self.config.vision_config | |
else: | |
vision_config = self.config | |
if hasattr(vision_config, "num_channels"): | |
pixel_values_shape[1] = vision_config.num_channels | |
else: | |
raise NotImplementedError( | |
"Could not infer number of channels from config, please override input_signature to specify input shapes." | |
) | |
if hasattr(vision_config, "image_size"): | |
pixel_values_shape[2] = pixel_values_shape[3] = vision_config.image_size | |
elif hasattr(vision_config, "input_size"): | |
pixel_values_shape[2] = pixel_values_shape[3] = vision_config.input_size | |
else: | |
raise NotImplementedError( | |
"Could not infer input image shape from config, please override input_signature to specify input shapes." | |
) | |
sig["pixel_values"] = tf.TensorSpec(pixel_values_shape, tf.float32, name="pixel_values") | |
if "input_features" in model_inputs: | |
raise NotImplementedError("Audio models need a manually defined input_signature") | |
return sig | |
def serving_output(self, output): | |
""" | |
Prepare the output of the saved model. Can be overridden if specific serving modifications are required. | |
""" | |
if not isinstance(output, ModelOutput): | |
return output | |
for key in output: | |
if key.endswith("hidden_states") and not getattr(self.config, "output_hidden_states", False): | |
output[key] = None | |
elif key.endswith("attentions") and not getattr(self.config, "output_attentions", False): | |
output[key] = None | |
elif key == "past_key_values" and not getattr(self.config, "use_cache", False): | |
output[key] = None | |
elif key == "cross_attentions" and not ( | |
getattr(self.config, "output_attentions", False) and getattr(self.config, "add_cross_attention", False) | |
): | |
output[key] = None | |
if isinstance(output[key], (tuple, list)): | |
try: | |
output[key] = tf.convert_to_tensor(output[key]) | |
except (ValueError, tf.errors.InvalidArgumentError): | |
pass # Layers may not have the same dimensions | |
return output | |
def can_generate(cls) -> bool: | |
""" | |
Returns whether this model can generate sequences with `.generate()`. | |
Returns: | |
`bool`: Whether this model can generate sequences with `.generate()`. | |
""" | |
# Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation. | |
# Alternativelly, the model can also have a custom `generate` function. | |
if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate): | |
return False | |
return True | |
def get_input_embeddings(self) -> tf.keras.layers.Layer: | |
""" | |
Returns the model's input embeddings layer. | |
Returns: | |
`tf.Variable`: The embeddings layer mapping vocabulary to hidden states. | |
""" | |
main_layer = getattr(self, self.base_model_prefix, self) | |
if main_layer is not self: | |
return main_layer.get_input_embeddings() | |
else: | |
raise NotImplementedError | |
def _save_checkpoint(self, checkpoint_dir, epoch): | |
if not os.path.isdir(checkpoint_dir): | |
os.mkdir(checkpoint_dir) | |
# We avoid tf.train.checkpoint or saving weights in TF format, even though that includes optimizer | |
# state for us, because it requires special handling for objects like custom losses, which we use | |
# internally and which users are likely to use too | |
weights_path = os.path.join(checkpoint_dir, "weights.h5") | |
self.save_weights(weights_path) | |
extra_data = {"epoch": epoch, "optimizer_state": self.optimizer.get_weights()} | |
extra_data_path = os.path.join(checkpoint_dir, "extra_data.pickle") | |
with open(extra_data_path, "wb") as f: | |
pickle.dump(extra_data, f) | |
def load_repo_checkpoint(self, repo_path_or_name): | |
""" | |
Loads a saved checkpoint (model weights and optimizer state) from a repo. Returns the current epoch count when | |
the checkpoint was made. | |
Args: | |
repo_path_or_name (`str`): | |
Can either be a repository name for your {object} in the Hub or a path to a local folder (in which case | |
the repository will have the name of that local folder). | |
Returns: | |
`dict`: A dictionary of extra metadata from the checkpoint, most commonly an "epoch" count. | |
""" | |
if getattr(self, "optimizer", None) is None: | |
raise RuntimeError( | |
"Checkpoint loading failed as no optimizer is attached to the model. " | |
"This is most likely caused by the model not being compiled." | |
) | |
if os.path.isdir(repo_path_or_name): | |
local_dir = repo_path_or_name | |
else: | |
# If this isn't a local path, check that the remote repo exists and has a checkpoint in it | |
repo_files = list_repo_files(repo_path_or_name) | |
for file in ("checkpoint/weights.h5", "checkpoint/extra_data.pickle"): | |
if file not in repo_files: | |
raise FileNotFoundError(f"Repo {repo_path_or_name} does not contain checkpoint file {file}!") | |
repo = Repository(repo_path_or_name.split("/")[-1], clone_from=repo_path_or_name) | |
local_dir = repo.local_dir | |
# Now make sure the repo actually has a checkpoint in it. | |
checkpoint_dir = os.path.join(local_dir, "checkpoint") | |
weights_file = os.path.join(checkpoint_dir, "weights.h5") | |
if not os.path.isfile(weights_file): | |
raise FileNotFoundError(f"Could not find checkpoint file weights.h5 in repo {repo_path_or_name}!") | |
extra_data_file = os.path.join(checkpoint_dir, "extra_data.pickle") | |
if not os.path.isfile(extra_data_file): | |
raise FileNotFoundError(f"Could not find checkpoint file extra_data.pickle in repo {repo_path_or_name}!") | |
# Assuming the repo is real and we got a checkpoint, load the weights and the optimizer state into the model. | |
# The optimizer state includes the iteration count, so learning rate schedules should resume as normal too. | |
self.load_weights(weights_file) | |
with open(extra_data_file, "rb") as f: | |
extra_data = pickle.load(f) | |
self.optimizer.set_weights(extra_data["optimizer_state"]) | |
# Finally, return the epoch number from the checkpoint. This isn't a property of the model, so we can't | |
# set it directly, but the user can pass it to fit(). | |
return {"epoch": extra_data["epoch"]} | |
def prepare_tf_dataset( | |
self, | |
dataset: "datasets.Dataset", # noqa:F821 | |
batch_size: int = 8, | |
shuffle: bool = True, | |
tokenizer: Optional["PreTrainedTokenizerBase"] = None, | |
collate_fn: Optional[Callable] = None, | |
collate_fn_args: Optional[Dict[str, Any]] = None, | |
drop_remainder: Optional[bool] = None, | |
prefetch: bool = True, | |
): | |
""" | |
Wraps a HuggingFace [`~datasets.Dataset`] as a `tf.data.Dataset` with collation and batching. This method is | |
designed to create a "ready-to-use" dataset that can be passed directly to Keras methods like `fit()` without | |
further modification. The method will drop columns from the dataset if they don't match input names for the | |
model. If you want to specify the column names to return rather than using the names that match this model, we | |
recommend using `Dataset.to_tf_dataset()` instead. | |
Args: | |
dataset (`Any`): | |
A [~`datasets.Dataset`] to be wrapped as a `tf.data.Dataset`. | |
batch_size (`int`, defaults to 8): | |
The size of batches to return. | |
shuffle (`bool`, defaults to `True`): | |
Whether to return samples from the dataset in random order. Usually `True` for training datasets and | |
`False` for validation/test datasets. | |
tokenizer ([`PreTrainedTokenizerBase`], *optional*): | |
A `PreTrainedTokenizer` that will be used to pad samples to create batches. Has no effect if a specific | |
`collate_fn` is passed instead. | |
collate_fn (`Callable`, *optional*): | |
A function that collates samples from the dataset into a single batch. Defaults to | |
`DefaultDataCollator` if no `tokenizer` is supplied or `DataCollatorWithPadding` if a `tokenizer` is | |
passed. | |
collate_fn_args (`Dict[str, Any]`, *optional*): | |
A dict of arguments to pass to the `collate_fn` alongside the list of samples. | |
drop_remainder (`bool`, *optional*): | |
Whether to drop the final batch, if the batch_size does not evenly divide the dataset length. Defaults | |
to the same setting as `shuffle`. | |
prefetch (`bool`, defaults to `True`): | |
Whether to add prefetching to the end of the `tf.data` pipeline. This is almost always beneficial for | |
performance, but can be disabled in edge cases. | |
Returns: | |
`Dataset`: A `tf.data.Dataset` which is ready to pass to the Keras API. | |
""" | |
requires_backends(self, ["datasets"]) | |
import datasets | |
if collate_fn is None: | |
if tokenizer is None: | |
collate_fn = DefaultDataCollator(return_tensors="np") | |
else: | |
collate_fn = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="np") | |
if collate_fn_args is None: | |
collate_fn_args = {} | |
if not isinstance(dataset, datasets.Dataset): | |
raise TypeError("Dataset argument should be a datasets.Dataset!") | |
model_inputs = list(inspect.signature(self.call).parameters) | |
model_labels = find_labels(self.__class__) | |
if "cols_to_retain" in list(inspect.signature(dataset._get_output_signature).parameters.keys()): | |
output_signature, _ = dataset._get_output_signature( | |
dataset, | |
batch_size=None, | |
collate_fn=collate_fn, | |
collate_fn_args=collate_fn_args, | |
cols_to_retain=model_inputs, | |
) | |
else: | |
# TODO Matt: This is a workaround for older versions of datasets that are missing the `cols_to_retain` | |
# argument. We should remove this once the minimum supported version of datasets is > 2.3.2 | |
unwanted_columns = [ | |
feature | |
for feature in dataset.features | |
if feature not in model_inputs and feature not in ("label_ids", "label") | |
] | |
dataset = dataset.remove_columns(unwanted_columns) | |
output_signature, _ = dataset._get_output_signature( | |
dataset, batch_size=None, collate_fn=collate_fn, collate_fn_args=collate_fn_args | |
) | |
output_columns = list(output_signature.keys()) | |
feature_cols = [col for col in output_columns if col in model_inputs and col not in model_labels] | |
label_cols = [col for col in output_columns if col in model_labels] | |
# Backwards compatibility for older versions of datasets. Previously, if `columns` or `label_cols` | |
# were a single element list, the returned element spec would be a single element. Now, passing [feature] | |
# will return a dict structure {"feature": feature}, and passing a single string will return a single element. | |
feature_cols = feature_cols[0] if len(feature_cols) == 1 else feature_cols | |
label_cols = label_cols[0] if len(label_cols) == 1 else label_cols | |
if drop_remainder is None: | |
drop_remainder = shuffle | |
tf_dataset = dataset.to_tf_dataset( | |
columns=feature_cols, | |
label_cols=label_cols, | |
batch_size=batch_size, | |
shuffle=shuffle, | |
drop_remainder=drop_remainder, | |
collate_fn=collate_fn, | |
collate_fn_args=collate_fn_args, | |
prefetch=prefetch, | |
) | |
return tf_dataset | |
def compile( | |
self, | |
optimizer="rmsprop", | |
loss="auto_with_warning", | |
metrics=None, | |
loss_weights=None, | |
weighted_metrics=None, | |
run_eagerly=None, | |
steps_per_execution=None, | |
**kwargs, | |
): | |
""" | |
This is a thin wrapper that sets the model's loss output head as the loss if the user does not specify a loss | |
function themselves. | |
""" | |
if loss in ("auto_with_warning", "passthrough"): # "passthrough" for workflow backward compatibility | |
logger.info( | |
"No loss specified in compile() - the model's internal loss computation will be used as the " | |
"loss. Don't panic - this is a common way to train TensorFlow models in Transformers! " | |
"To disable this behaviour please pass a loss argument, or explicitly pass " | |
"`loss=None` if you do not want your model to compute a loss. You can also specify `loss='auto'` to " | |
"get the internal loss without printing this info string." | |
) | |
loss = "auto" | |
if loss == "auto": | |
loss = dummy_loss | |
self._using_dummy_loss = True | |
else: | |
self._using_dummy_loss = False | |
parent_args = list(inspect.signature(tf.keras.Model.compile).parameters.keys()) | |
# This argument got renamed, we need to support both versions | |
if "steps_per_execution" in parent_args: | |
super().compile( | |
optimizer=optimizer, | |
loss=loss, | |
metrics=metrics, | |
loss_weights=loss_weights, | |
weighted_metrics=weighted_metrics, | |
run_eagerly=run_eagerly, | |
steps_per_execution=steps_per_execution, | |
**kwargs, | |
) | |
else: | |
super().compile( | |
optimizer=optimizer, | |
loss=loss, | |
metrics=metrics, | |
loss_weights=loss_weights, | |
weighted_metrics=weighted_metrics, | |
run_eagerly=run_eagerly, | |
experimental_steps_per_execution=steps_per_execution, | |
**kwargs, | |
) | |
def compute_loss(self, *args, **kwargs): | |
if hasattr(tf.keras.Model, "compute_loss"): | |
# This will be true in TF 2.8 or greater | |
return super().compute_loss(*args, **kwargs) | |
else: | |
warnings.warn( | |
"The old compute_loss method is deprecated as it conflicts with the Keras compute_loss " | |
"method added in TF 2.8. If you want the original HF compute_loss, please call " | |
"hf_compute_loss() instead. From TF versions >= 2.8, or Transformers versions >= 5, " | |
"calling compute_loss() will get the Keras method instead.", | |
FutureWarning, | |
) | |
return self.hf_compute_loss(*args, **kwargs) | |
def get_label_to_output_name_mapping(self): | |
arg_names = list(inspect.signature(self.call).parameters) | |
if self._label_to_output_map is not None: | |
return self._label_to_output_map | |
elif "start_positions" in arg_names: | |
return {"start_positions": "start_logits", "end_positions": "end_logits"} | |
elif "sentence_order_label" in arg_names: | |
return {"labels": "prediction_logits", "sentence_order_label": "sop_logits"} | |
elif "next_sentence_label" in arg_names: | |
return {"labels": "prediction_logits", "next_sentence_label": "seq_relationship_logits"} | |
elif "mc_labels" in arg_names: | |
return {"labels": "logits", "mc_labels": "mc_logits"} | |
else: | |
return {} | |
def train_step(self, data): | |
""" | |
A modification of Keras's default `train_step` that correctly handles matching outputs to labels for our models | |
and supports directly training on the loss output head. In addition, it ensures input keys are copied to the | |
labels where appropriate. It will also copy label keys into the input dict when using the dummy loss, to ensure | |
that they are available to the model during the forward pass. | |
""" | |
# We hardcode the most common renamings; models with weirder names can set `self._label_to_output_map` | |
arg_names = list(inspect.signature(self.call).parameters) | |
label_kwargs = find_labels(self.__class__) | |
label_to_output = self.get_label_to_output_name_mapping() | |
output_to_label = {val: key for key, val in label_to_output.items()} | |
if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"): | |
# Newer TF train steps leave this out | |
data = expand_1d(data) | |
x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data) | |
# If the inputs are mutable dictionaries, make a shallow copy of them because we will modify | |
# them during input/label pre-processing. This avoids surprising the user by wrecking their data. | |
# In addition, modifying mutable Python inputs makes XLA compilation impossible. | |
if isinstance(x, dict): | |
x = x.copy() | |
if isinstance(y, dict): | |
y = y.copy() | |
# When using a dummy loss, we ensure that separate labels are copied to the correct model arguments, | |
# if those keys are not already present in the input dict | |
if self._using_dummy_loss and y is not None: | |
# If y is a tensor and the model only has one label-like input, map y to that input | |
if len(label_kwargs) == 1 and isinstance(y, tf.Tensor): | |
if isinstance(x, tf.Tensor): | |
x = {arg_names[0]: x} | |
label_kwarg = next(iter(label_kwargs)) | |
if label_kwarg not in x: | |
x[label_kwarg] = y | |
# Otherwise, copy keys from y to x as long as they weren't already present in x | |
elif isinstance(y, dict): | |
if isinstance(x, tf.Tensor): | |
x = {arg_names[0]: x} | |
for key, val in y.items(): | |
if key in arg_names and key not in x: | |
x[key] = val | |
elif output_to_label.get(key, None) in arg_names and key not in x: | |
x[output_to_label[key]] = val | |
if y is None: | |
y = {key: val for key, val in x.items() if key in label_kwargs} | |
if not y and not self._using_dummy_loss: | |
raise ValueError("Could not find label column(s) in input dict and no separate labels were provided!") | |
if isinstance(y, dict): | |
# Rename labels at this point to match output heads | |
y = {label_to_output.get(key, key): val for key, val in y.items()} | |
# Run forward pass. | |
with tf.GradientTape() as tape: | |
if self._using_dummy_loss and "return_loss" in arg_names: | |
y_pred = self(x, training=True, return_loss=True) | |
else: | |
y_pred = self(x, training=True) | |
if self._using_dummy_loss: | |
loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses) | |
else: | |
loss = None | |
# This next block matches outputs to label keys. Tensorflow's standard method for doing this | |
# can get very confused if any of the keys contain nested values (e.g. lists/tuples of Tensors) | |
if isinstance(y, dict) and len(y) == 1: | |
if list(y.keys())[0] in y_pred.keys(): | |
y_pred = y_pred[list(y.keys())[0]] | |
elif list(y_pred.keys())[0] == "loss": | |
y_pred = y_pred[1] | |
else: | |
y_pred = y_pred[0] | |
_, y = y.popitem() | |
elif isinstance(y, dict): | |
# If the labels are a dict, match keys from the output by name | |
y_pred = {key: val for key, val in y_pred.items() if key in y} | |
elif isinstance(y, tuple) or isinstance(y, list): | |
# If the labels are a tuple/list, match keys to the output by order, skipping the loss. | |
if list(y_pred.keys())[0] == "loss": | |
y_pred = y_pred.to_tuple()[1:] | |
else: | |
y_pred = y_pred.to_tuple() | |
y_pred = y_pred[: len(y)] # Remove unused fields in case those cause problems | |
else: | |
# If the labels are a single tensor, match them to the first non-loss tensor in the output | |
if list(y_pred.keys())[0] == "loss": | |
y_pred = y_pred[1] | |
else: | |
y_pred = y_pred[0] | |
if loss is None: | |
loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses) | |
# Run backwards pass. | |
self.optimizer.minimize(loss, self.trainable_variables, tape=tape) | |
self.compiled_metrics.update_state(y, y_pred, sample_weight) | |
# Collect metrics to return | |
return_metrics = {} | |
for metric in self.metrics: | |
result = metric.result() | |
if isinstance(result, dict): | |
return_metrics.update(result) | |
else: | |
return_metrics[metric.name] = result | |
return return_metrics | |
def test_step(self, data): | |
""" | |
A modification of Keras's default `train_step` that correctly handles matching outputs to labels for our models | |
and supports directly training on the loss output head. In addition, it ensures input keys are copied to the | |
labels where appropriate. It will also copy label keys into the input dict when using the dummy loss, to ensure | |
that they are available to the model during the forward pass. | |
""" | |
# We hardcode the most common renamings; models with weirder names can set `self._label_to_output_map` | |
arg_names = list(inspect.signature(self.call).parameters) | |
label_kwargs = find_labels(self.__class__) | |
label_to_output = self.get_label_to_output_name_mapping() | |
output_to_label = {val: key for key, val in label_to_output.items()} | |
if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"): | |
# Newer versions leave this out | |
data = expand_1d(data) | |
x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data) | |
# If the inputs are mutable dictionaries, make a shallow copy of them because we will modify | |
# them during input/label pre-processing. This avoids surprising the user by wrecking their data. | |
# In addition, modifying mutable Python inputs makes XLA compilation impossible. | |
if isinstance(x, dict): | |
x = x.copy() | |
if isinstance(y, dict): | |
y = y.copy() | |
# When using a dummy loss, we ensure that separate labels are copied to the correct model arguments, | |
# if those keys are not already present in the input dict | |
if self._using_dummy_loss and y is not None: | |
arg_names = list(inspect.signature(self.call).parameters) | |
# If y is a tensor and the model only has one label-like input, map y to that input | |
if len(label_kwargs) == 1 and isinstance(y, tf.Tensor): | |
if isinstance(x, tf.Tensor): | |
x = {arg_names[0]: x} | |
label_kwarg = next(iter(label_kwargs)) | |
if label_kwarg not in x: | |
x[label_kwarg] = y | |
# Otherwise, copy keys from y to x as long as they weren't already present in x | |
elif isinstance(y, dict): | |
if isinstance(x, tf.Tensor): | |
x = {arg_names[0]: x} | |
for key, val in y.items(): | |
if key in arg_names and key not in x: | |
x[key] = val | |
elif output_to_label.get(key, None) in arg_names and key not in x: | |
x[output_to_label[key]] = val | |
if y is None: | |
y = {key: val for key, val in x.items() if key in label_kwargs} | |
if not y and not self._using_dummy_loss: | |
raise ValueError("Could not find label column(s) in input dict and no separate labels were provided!") | |
if isinstance(y, dict): | |
# Rename labels at this point to match output heads | |
y = {label_to_output.get(key, key): val for key, val in y.items()} | |
# Run forward pass. | |
if self._using_dummy_loss and "return_loss" in arg_names: | |
y_pred = self(x, return_loss=True, training=False) | |
else: | |
y_pred = self(x, training=False) | |
if self._using_dummy_loss: | |
loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses) | |
else: | |
loss = None | |
# This next block matches outputs to label keys. Tensorflow's standard method for doing this | |
# can get very confused if any of the keys contain nested values (e.g. lists/tuples of Tensors) | |
if isinstance(y, dict) and len(y) == 1: | |
if list(y.keys())[0] in y_pred.keys(): | |
y_pred = y_pred[list(y.keys())[0]] | |
elif list(y_pred.keys())[0] == "loss": | |
y_pred = y_pred[1] | |
else: | |
y_pred = y_pred[0] | |
_, y = y.popitem() | |
elif isinstance(y, dict): | |
# If the labels are a dict, match keys from the output by name | |
y_pred = {key: val for key, val in y_pred.items() if key in y} | |
elif isinstance(y, tuple) or isinstance(y, list): | |
# If the labels are a tuple/list, match keys to the output by order, skipping the loss. | |
if list(y_pred.keys())[0] == "loss": | |
y_pred = y_pred.to_tuple()[1:] | |
else: | |
y_pred = y_pred.to_tuple() | |
y_pred = y_pred[: len(y)] # Remove unused fields in case those cause problems | |
else: | |
# If the labels are a single tensor, match them to the first non-loss tensor in the output | |
if list(y_pred.keys())[0] == "loss": | |
y_pred = y_pred[1] | |
else: | |
y_pred = y_pred[0] | |
if loss is None: | |
loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses) | |
self.compiled_metrics.update_state(y, y_pred, sample_weight) | |
# Collect metrics to return | |
return_metrics = {} | |
for metric in self.metrics: | |
result = metric.result() | |
if isinstance(result, dict): | |
return_metrics.update(result) | |
else: | |
return_metrics[metric.name] = result | |
return return_metrics | |
def create_model_card( | |
self, | |
output_dir, | |
model_name: str, | |
language: Optional[str] = None, | |
license: Optional[str] = None, | |
tags: Optional[str] = None, | |
finetuned_from: Optional[str] = None, | |
tasks: Optional[str] = None, | |
dataset_tags: Optional[Union[str, List[str]]] = None, | |
dataset: Optional[Union[str, List[str]]] = None, | |
dataset_args: Optional[Union[str, List[str]]] = None, | |
): | |
""" | |
Creates a draft of a model card using the information available to the `Trainer`. | |
Args: | |
output_dir (`str` or `os.PathLike`): | |
The folder in which to create the model card. | |
model_name (`str`, *optional*): | |
The name of the model. | |
language (`str`, *optional*): | |
The language of the model (if applicable) | |
license (`str`, *optional*): | |
The license of the model. Will default to the license of the pretrained model used, if the original | |
model given to the `Trainer` comes from a repo on the Hub. | |
tags (`str` or `List[str]`, *optional*): | |
Some tags to be included in the metadata of the model card. | |
finetuned_from (`str`, *optional*): | |
The name of the model used to fine-tune this one (if applicable). Will default to the name of the repo | |
of the original model given to the `Trainer` (if it comes from the Hub). | |
tasks (`str` or `List[str]`, *optional*): | |
One or several task identifiers, to be included in the metadata of the model card. | |
dataset_tags (`str` or `List[str]`, *optional*): | |
One or several dataset tags, to be included in the metadata of the model card. | |
dataset (`str` or `List[str]`, *optional*): | |
One or several dataset identifiers, to be included in the metadata of the model card. | |
dataset_args (`str` or `List[str]`, *optional*): | |
One or several dataset arguments, to be included in the metadata of the model card. | |
""" | |
# Avoids a circular import by doing this when necessary. | |
from .modelcard import TrainingSummary # tests_ignore | |
training_summary = TrainingSummary.from_keras( | |
self, | |
keras_history=self.history, | |
language=language, | |
license=license, | |
tags=tags, | |
model_name=model_name, | |
finetuned_from=finetuned_from, | |
tasks=tasks, | |
dataset_tags=dataset_tags, | |
dataset=dataset, | |
dataset_args=dataset_args, | |
) | |
model_card = training_summary.to_model_card() | |
with open(os.path.join(output_dir, "README.md"), "w") as f: | |
f.write(model_card) | |
def set_input_embeddings(self, value): | |
""" | |
Set model's input embeddings | |
Args: | |
value (`tf.Variable`): | |
The new weights mapping hidden states to vocabulary. | |
""" | |
main_layer = getattr(self, self.base_model_prefix) | |
if main_layer is None: | |
raise NotImplementedError("The model does not implements the base_model_prefix attribute.") | |
try: | |
main_layer.set_input_embeddings(value) | |
except AttributeError: | |
logger.info("Building the model") | |
self.build() | |
main_layer.set_input_embeddings(value) | |
def get_output_embeddings(self) -> Union[None, tf.keras.layers.Layer]: | |
""" | |
Returns the model's output embeddings | |
Returns: | |
`tf.Variable`: The new weights mapping vocabulary to hidden states. | |
""" | |
if self.get_lm_head() is not None: | |
lm_head = self.get_lm_head() | |
try: | |
return lm_head.get_output_embeddings() | |
except AttributeError: | |
logger.info("Building the model") | |
self.build() | |
return lm_head().get_output_embeddings() | |
return None # Overwrite for models with output embeddings | |
def set_output_embeddings(self, value): | |
""" | |
Set model's output embeddings | |
Args: | |
value (`tf.Variable`): | |
The new weights mapping hidden states to vocabulary. | |
""" | |
if self.get_lm_head() is not None: | |
lm_head = self.get_lm_head() | |
try: | |
lm_head.set_output_embeddings(value) | |
except AttributeError: | |
logger.info("Building the model") | |
self.build() | |
lm_head.set_output_embeddings(value) | |
def get_output_layer_with_bias(self) -> Union[None, tf.keras.layers.Layer]: | |
""" | |
Get the layer that handles a bias attribute in case the model has an LM head with weights tied to the | |
embeddings | |
Return: | |
`tf.keras.layers.Layer`: The layer that handles the bias, None if not an LM model. | |
""" | |
warnings.warn( | |
"The method get_output_layer_with_bias is deprecated. Please use `get_lm_head` instead.", FutureWarning | |
) | |
return self.get_lm_head() | |
def get_prefix_bias_name(self) -> Union[None, str]: | |
""" | |
Get the concatenated _prefix name of the bias from the model name to the parent layer | |
Return: | |
`str`: The _prefix name of the bias. | |
""" | |
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) | |
return None | |
def get_bias(self) -> Union[None, Dict[str, tf.Variable]]: | |
""" | |
Dict of bias attached to an LM head. The key represents the name of the bias attribute. | |
Return: | |
`tf.Variable`: The weights representing the bias, None if not an LM model. | |
""" | |
if self.get_lm_head() is not None: | |
lm_head = self.get_lm_head() | |
try: | |
return lm_head.get_bias() | |
except AttributeError: | |
self.build() | |
return lm_head.get_bias() | |
return None | |
def set_bias(self, value): | |
""" | |
Set all the bias in the LM head. | |
Args: | |
value (`Dict[tf.Variable]`): | |
All the new bias attached to an LM head. | |
""" | |
if self.get_lm_head() is not None: | |
lm_head = self.get_lm_head() | |
try: | |
lm_head.set_bias(value) | |
except AttributeError: | |
self.build() | |
lm_head.set_bias(value) | |
def get_lm_head(self) -> tf.keras.layers.Layer: | |
""" | |
The LM Head layer. This method must be overwritten by all the models that have a lm head. | |
Return: | |
`tf.keras.layers.Layer`: The LM head layer if the model has one, None if not. | |
""" | |
return None | |
def resize_token_embeddings( | |
self, new_num_tokens: Optional[int] = None | |
) -> Union[tf.keras.layers.Embedding, tf.Variable]: | |
""" | |
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`. | |
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. | |
Arguments: | |
new_num_tokens (`int`, *optional*): | |
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized | |
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just | |
returns a pointer to the input tokens without doing anything. | |
Return: | |
`tf.Variable` or `tf.keras.layers.Embedding`: Pointer to the input tokens of the model. | |
""" | |
# TODO (joao): flagged for replacement (by `_v2_resized_token_embeddings`) due to embeddings refactor | |
# Run the new code path if the model has a keras embeddings layer | |
if isinstance(self.get_input_embeddings(), tf.keras.layers.Embedding): | |
return self._v2_resized_token_embeddings(new_num_tokens) | |
if new_num_tokens is None or new_num_tokens == self.config.vocab_size: | |
return self._get_word_embedding_weight(self.get_input_embeddings()) | |
model_embeds = self._resize_token_embeddings(new_num_tokens) | |
# Update base model and current model config | |
self.config.vocab_size = new_num_tokens | |
return model_embeds | |
def _v2_resized_token_embeddings(self, new_num_tokens: Optional[int] = None) -> tf.keras.layers.Embedding: | |
""" | |
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`. | |
Arguments: | |
new_num_tokens (`int`, *optional*): | |
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized | |
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just | |
returns a pointer to the input tokens without doing anything. | |
Return: | |
`tf.keras.layers.Embedding`: Pointer to the input tokens of the model. | |
""" | |
if new_num_tokens is None or new_num_tokens == self.config.vocab_size: | |
return self.get_input_embeddings() | |
model_embeds = self._v2_resize_token_embeddings(new_num_tokens) | |
# Update base model and current model config | |
self.config.vocab_size = new_num_tokens | |
return model_embeds | |
def _get_word_embedding_weight(model, embedding_layer): | |
# TODO (joao): flagged for delection due to embeddings refactor | |
# If the variable holds the weights themselves, return them | |
if isinstance(embedding_layer, tf.Tensor): | |
return embedding_layer | |
# Otherwise, try to get them from the layer's attributes | |
embeds = getattr(embedding_layer, "weight", None) | |
if embeds is not None: | |
return embeds | |
embeds = getattr(embedding_layer, "decoder", None) | |
if embeds is not None: | |
return embeds | |
# The reason why the attributes don't exist might be | |
# because the model is not built, so retry getting | |
# the argument after building the model | |
model.build() | |
embeds = getattr(embedding_layer, "weight", None) | |
if embeds is not None: | |
return embeds | |
embeds = getattr(embedding_layer, "decoder", None) | |
if embeds is not None: | |
return embeds | |
return None | |
def _resize_token_embeddings(self, new_num_tokens): | |
# TODO (joao): flagged for replacement (by `_v2_resize_token_embeddings`) due to embeddings refactor | |
old_embeddings = self._get_word_embedding_weight(self.get_input_embeddings()) | |
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) | |
# if word embeddings are not tied, make sure that lm head bias is resized as well | |
if self.get_bias() is not None: | |
old_lm_head_bias = self.get_bias() | |
new_lm_head_bias = self._get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens) | |
self.set_bias(new_lm_head_bias) | |
# if word embeddings are not tied, make sure that lm head decoder is resized as well | |
if self.get_output_embeddings() is not None: | |
old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings()) | |
new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens) | |
self.set_output_embeddings(new_lm_head_decoder) | |
self.set_input_embeddings(new_embeddings) | |
return self.get_input_embeddings() | |
def _v2_resize_token_embeddings(self, new_num_tokens): | |
old_embeddings = self.get_input_embeddings() | |
new_embeddings = self._v2_get_resized_embeddings(old_embeddings, new_num_tokens) | |
self.set_input_embeddings(new_embeddings) | |
# If word embeddings are not tied, make sure that lm head bias is resized as well | |
if self.get_bias() is not None: | |
old_lm_head_bias = self.get_bias() | |
new_lm_head_bias = self._v2_get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens) | |
self.set_bias(new_lm_head_bias) | |
# If word embeddings are not tied, make sure that lm head decoder is resized as well. | |
tied_weights = self.get_input_embeddings() == self.get_output_embeddings() | |
if self.get_output_embeddings() is not None and not tied_weights: | |
old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings()) | |
# TODO (joao): this one probably needs a v2 version with other models | |
new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens) | |
self.set_output_embeddings(new_lm_head_decoder) | |
return self.get_input_embeddings() | |
def _get_resized_lm_head_bias(self, old_lm_head_bias, new_num_tokens): | |
""" | |
Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end. | |
Reducing the size will remove vectors from the end | |
Args: | |
old_lm_head_bias (`tf.Variable`): | |
Old lm head bias to be resized. | |
new_num_tokens (`int`, *optional*): | |
New number of tokens in the linear matrix. | |
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove | |
vectors from the end. If not provided or `None`, just returns None | |
Return: | |
`tf.Variable`: Pointer to the resized bias. | |
""" | |
# TODO (joao): flagged for replacement (by `_v2_get_resized_lm_head_bias`) due to embeddings refactor | |
new_lm_head_bias = {} | |
for attr, weight in old_lm_head_bias.items(): | |
first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight) | |
size_diff = new_num_tokens - old_num_tokens | |
final_shape = [new_num_tokens] if first_dim is None else [first_dim, new_num_tokens] | |
# initialize new bias | |
if tf.math.greater(size_diff, 0): | |
padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]] | |
current_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape), constant_values=-1) | |
num_tokens_to_copy = min(old_num_tokens, new_num_tokens) | |
mask_shape = [num_tokens_to_copy] if first_dim is None else [1, num_tokens_to_copy] | |
bias_mask = tf.fill(tf.convert_to_tensor(mask_shape), True) | |
bias_mask = tf.pad(bias_mask, tf.convert_to_tensor(padding_shape), constant_values=False) | |
else: | |
slice_from = [0] if first_dim is None else [0, 0] | |
current_bias = tf.slice( | |
weight.value(), tf.convert_to_tensor(slice_from), tf.convert_to_tensor(final_shape) | |
) | |
bias_mask = tf.fill(tf.convert_to_tensor(final_shape), True) | |
new_bias = self.add_weight( | |
shape=final_shape, | |
initializer="zeros", | |
trainable=True, | |
name=weight.name.split(":")[0], | |
) | |
init_bias = tf.where(bias_mask, current_bias, new_bias.value()) | |
new_bias.assign(init_bias) | |
new_lm_head_bias[attr] = new_bias | |
return new_lm_head_bias | |
def _v2_get_resized_lm_head_bias( | |
self, old_lm_head_bias: Dict[str, tf.Variable], new_num_tokens: int | |
) -> Dict[str, tf.Tensor]: | |
""" | |
Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end. | |
Reducing the size will remove vectors from the end | |
Args: | |
old_lm_head_bias (`Dict[str, tf.Variable]`): | |
Old lm head bias to be resized. | |
new_num_tokens (`int`): | |
New number of tokens in the linear matrix. Increasing the size will add newly initialized vectors at | |
the end. Reducing the size will remove vectors from the end. | |
Return: | |
`tf.Tensor`: Values for the resized bias. | |
""" | |
new_lm_head_bias = {} | |
for attr, weight in old_lm_head_bias.items(): | |
# Determine the size difference (depending on the shape) | |
first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight) | |
size_diff = new_num_tokens - old_num_tokens | |
# Copy the old bias values to the new bias | |
if old_num_tokens > new_num_tokens: | |
new_bias = weight.value()[..., :new_num_tokens] | |
else: | |
padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]] | |
new_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape)) | |
new_lm_head_bias[attr] = new_bias | |
return new_lm_head_bias | |
def _get_resized_lm_head_decoder(self, old_lm_head_decoder, new_num_tokens): | |
""" | |
Build a resized decoder from the old ones. Increasing the size will add newly initialized vectors at the end. | |
Reducing the size will remove vectors from the end | |
Args: | |
old_lm_head_decoder (`tf.Variable`): | |
Old lm head decoder to be resized. | |
new_num_tokens (`int`, *optional*): | |
New number of tokens in the linear matrix. | |
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove | |
vectors from the end. If not provided or `None`, just returns None | |
Return: | |
`tf.Variable`: Pointer to the resized decoder or None if the output embeddings are different from the input | |
ones. | |
""" | |
new_lm_head_decoder = old_lm_head_decoder | |
is_input_output_equals = tf.reduce_any( | |
self._get_word_embedding_weight(self.get_input_embeddings()) == old_lm_head_decoder | |
) | |
if old_lm_head_decoder is not None and not is_input_output_equals: | |
old_embedding_dim = shape_list(old_lm_head_decoder)[1] | |
decoder_mask, current_decoder = init_copy_embeddings(old_lm_head_decoder, new_num_tokens) | |
new_lm_head_decoder = self.add_weight( | |
shape=(new_num_tokens, old_embedding_dim), | |
initializer="zeros", | |
trainable=True, | |
name=old_lm_head_decoder.name.split(":")[0], | |
) | |
init_decoder = tf.where(decoder_mask, current_decoder, new_lm_head_decoder.value()) | |
new_lm_head_decoder.assign(init_decoder) | |
return new_lm_head_decoder | |
def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None) -> tf.Variable: | |
""" | |
Build a resized Embedding weights from a provided token Embedding weights. Increasing the size will add newly | |
initialized vectors at the end. Reducing the size will remove vectors from the end | |
Args: | |
old_embeddings (`tf.Variable`): | |
Old embeddings to be resized. | |
new_num_tokens (`int`, *optional*): | |
New number of tokens in the embedding matrix. | |
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove | |
vectors from the end. If not provided or `None`, just returns a pointer to the input tokens | |
`tf.Variable` module of the model without doing anything. | |
Return: | |
`tf.Variable`: Pointer to the resized Embedding Module or the old Embedding Module if `new_num_tokens` is | |
`None` | |
""" | |
# TODO (joao): flagged for replacement (by `_v2_get_resized_embeddings`) due to embeddings refactor | |
old_embedding_dim = shape_list(old_embeddings)[1] | |
init_range = getattr(self.config, "initializer_range", 0.02) | |
embeddings_mask, current_embeddings = init_copy_embeddings(old_embeddings, new_num_tokens) | |
new_embeddings = self.add_weight( | |
name=old_embeddings.name.split(":")[0], | |
shape=[new_num_tokens, old_embedding_dim], | |
initializer=get_initializer(init_range), | |
dtype=tf.float32, | |
) | |
init_embeddings = tf.where(embeddings_mask, current_embeddings, new_embeddings.value()) | |
new_embeddings.assign(init_embeddings) | |
return new_embeddings | |
def _v2_get_resized_embeddings( | |
self, old_embeddings: tf.keras.layers.Embedding, new_num_tokens: int | |
) -> tf.keras.layers.Embedding: | |
""" | |
Build a resized Embedding layer from a provided Embedding layer. Increasing the size will add newly initialized | |
vectors at the end. Reducing the size will remove vectors from the end. | |
Args: | |
old_embeddings (`tf.keras.layers.Embedding`): | |
Old embeddings to be resized. | |
new_num_tokens (`int`, *optional*): | |
New number of tokens in the embedding matrix. | |
Return: | |
`tf.keras.layers.Embedding`: Resized Embedding layer. | |
""" | |
# Get the initialization range for the embeddings | |
init_range = 0.02 # default value | |
potential_initialization_variable_names = [ | |
"initializer_range", # most common | |
"initializer_factor", # e.g. T5 | |
"init_std", # e.g BART | |
] | |
for var_name in potential_initialization_variable_names: | |
if hasattr(self.config, var_name): | |
init_range = getattr(self.config, var_name) | |
# Get a new (initialized) embeddings layer | |
new_embeddings = tf.keras.layers.Embedding( | |
input_dim=new_num_tokens, | |
output_dim=old_embeddings.output_dim, | |
embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=init_range), | |
name=old_embeddings.embeddings.name[:-13], # exact same scoped name except "/embeddings:0" | |
) | |
new_embeddings(tf.constant([[0]])) | |
# Copy the old embeddings to the new embeddings | |
if old_embeddings.input_dim >= new_num_tokens: | |
init_embeddings = old_embeddings.embeddings[:new_num_tokens] | |
else: | |
init_embeddings = tf.concat( | |
[old_embeddings.embeddings, new_embeddings.embeddings[old_embeddings.input_dim :]], axis=0 | |
) | |
new_embeddings.embeddings.assign(init_embeddings) | |
return new_embeddings | |
def prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the base model. | |
Arguments: | |
heads_to_prune (`Dict[int, List[int]]`): | |
Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads | |
to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on | |
layer 1 and heads 2 and 3 on layer 2. | |
""" | |
raise NotImplementedError | |
def save_pretrained( | |
self, | |
save_directory, | |
saved_model=False, | |
version=1, | |
push_to_hub=False, | |
signatures=None, | |
max_shard_size: Union[int, str] = "10GB", | |
create_pr: bool = False, | |
safe_serialization: bool = False, | |
token: Optional[Union[str, bool]] = None, | |
**kwargs, | |
): | |
""" | |
Save a model and its configuration file to a directory, so that it can be re-loaded using the | |
[`~TFPreTrainedModel.from_pretrained`] class method. | |
Arguments: | |
save_directory (`str`): | |
Directory to which to save. Will be created if it doesn't exist. | |
saved_model (`bool`, *optional*, defaults to `False`): | |
If the model has to be saved in saved model format as well or not. | |
version (`int`, *optional*, defaults to 1): | |
The version of the saved model. A saved model needs to be versioned in order to be properly loaded by | |
TensorFlow Serving as detailed in the official documentation | |
https://www.tensorflow.org/tfx/serving/serving_basic | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the | |
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your | |
namespace). | |
signatures (`dict` or `tf.function`, *optional*): | |
Model's signature used for serving. This will be passed to the `signatures` argument of model.save(). | |
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): | |
The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size | |
lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). | |
<Tip warning={true}> | |
If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard | |
which will be bigger than `max_shard_size`. | |
</Tip> | |
create_pr (`bool`, *optional*, defaults to `False`): | |
Whether or not to create a PR with the uploaded files or directly commit. | |
safe_serialization (`bool`, *optional*, defaults to `False`): | |
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). | |
token (`str` or `bool`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use | |
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. | |
""" | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError( | |
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
) | |
token = use_auth_token | |
if token is not None: | |
kwargs["token"] = token | |
if os.path.isfile(save_directory): | |
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") | |
return | |
os.makedirs(save_directory, exist_ok=True) | |
if push_to_hub: | |
commit_message = kwargs.pop("commit_message", None) | |
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) | |
repo_id = self._create_repo(repo_id, **kwargs) | |
files_timestamps = self._get_files_timestamps(save_directory) | |
if saved_model: | |
# If `torch_dtype` is in the config with a torch dtype class as the value, we need to change it to string. | |
# (Although TF doesn't care about this attribute, we can't just remove it or set it to `None`.) | |
if getattr(self.config, "torch_dtype", None) is not None and not isinstance(self.config.torch_dtype, str): | |
self.config.torch_dtype = str(self.config.torch_dtype).split(".")[1] | |
if signatures is None: | |
serving_default = self.serving.get_concrete_function(self.input_signature) | |
if any(spec.dtype == tf.int32 for spec in self.input_signature.values()): | |
int64_spec = { | |
key: tf.TensorSpec( | |
shape=spec.shape, dtype=tf.int64 if spec.dtype == tf.int32 else spec.dtype, name=spec.name | |
) | |
for key, spec in self.input_signature.items() | |
} | |
int64_serving = self.serving.get_concrete_function(int64_spec) | |
signatures = {"serving_default": serving_default, "int64_serving": int64_serving} | |
else: | |
signatures = serving_default | |
saved_model_dir = os.path.join(save_directory, "saved_model", str(version)) | |
self.save(saved_model_dir, include_optimizer=False, signatures=signatures) | |
logger.info(f"Saved model created in {saved_model_dir}") | |
# Save configuration file | |
self.config.architectures = [self.__class__.__name__[2:]] | |
# If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be | |
# loaded from the Hub. | |
if self._auto_class is not None: | |
custom_object_save(self, save_directory, config=self.config) | |
self.config.save_pretrained(save_directory) | |
if self.can_generate(): | |
self.generation_config.save_pretrained(save_directory) | |
# If we save using the predefined names, we can load using `from_pretrained` | |
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else TF2_WEIGHTS_NAME | |
output_model_file = os.path.join(save_directory, weights_name) | |
shards, index = tf_shard_checkpoint(self.weights, max_shard_size) | |
# Clean the folder from a previous save | |
for filename in os.listdir(save_directory): | |
full_filename = os.path.join(save_directory, filename) | |
# If we have a shard file that is not going to be replaced, we delete it, but only from the main process | |
# in distributed settings to avoid race conditions. | |
weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "") | |
if ( | |
filename.startswith(weights_no_suffix) | |
and os.path.isfile(full_filename) | |
and filename not in shards.keys() | |
): | |
os.remove(full_filename) | |
if index is None: | |
if safe_serialization: | |
state_dict = {format_weight_name(w.name): w.value() for w in self.weights} | |
safe_save_file(state_dict, output_model_file, metadata={"format": "tf"}) | |
else: | |
self.save_weights(output_model_file) | |
logger.info(f"Model weights saved in {output_model_file}") | |
else: | |
save_index_file = os.path.join(save_directory, TF2_WEIGHTS_INDEX_NAME) | |
# Save the index as well | |
with open(save_index_file, "w", encoding="utf-8") as index_file: | |
content = json.dumps(index, indent=2, sort_keys=True) + "\n" | |
index_file.write(content) | |
logger.info( | |
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " | |
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the " | |
f"index located at {save_index_file}." | |
) | |
for shard_file, shard in shards.items(): | |
with h5py.File(os.path.join(save_directory, shard_file), mode="w") as shard_file: | |
layers = [] | |
for layer in sorted(shard, key=lambda x: x.name): | |
if "model." in layer.name or len(layer.name.split("/")) == 1: | |
layer_name = layer.name | |
else: | |
layer_name = "/".join(layer.name.split("/")[1:]) | |
param_dset = shard_file.create_dataset( | |
layer_name, layer.numpy().shape, dtype=layer.numpy().dtype | |
) | |
param_dset[:] = layer.numpy() | |
layers.append(layer_name.encode("utf8")) | |
save_attributes_to_hdf5_group(shard_file, "layer_names", layers) | |
if push_to_hub: | |
self._upload_modified_files( | |
save_directory, | |
repo_id, | |
files_timestamps, | |
commit_message=commit_message, | |
token=token, | |
) | |
def from_pretrained( | |
cls, | |
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], | |
*model_args, | |
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
ignore_mismatched_sizes: bool = False, | |
force_download: bool = False, | |
local_files_only: bool = False, | |
token: Optional[Union[str, bool]] = None, | |
revision: str = "main", | |
**kwargs, | |
): | |
r""" | |
Instantiate a pretrained TF 2.0 model from a pre-trained model configuration. | |
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come | |
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning | |
task. | |
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those | |
weights are discarded. | |
Parameters: | |
pretrained_model_name_or_path (`str`, *optional*): | |
Can be either: | |
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. | |
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a | |
user or organization name, like `dbmdz/bert-base-german-cased`. | |
- A path to a *directory* containing model weights saved using | |
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. | |
- A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this | |
case, `from_pt` should be set to `True` and a configuration object should be provided as `config` | |
argument. This loading path is slower than converting the PyTorch model in a TensorFlow model | |
using the provided conversion scripts and loading the TensorFlow model afterwards. | |
- `None` if you are both providing the configuration and state dictionary (resp. with keyword | |
arguments `config` and `state_dict`). | |
model_args (sequence of positional arguments, *optional*): | |
All remaining positional arguments will be passed to the underlying model's `__init__` method. | |
config (`Union[PretrainedConfig, str]`, *optional*): | |
Can be either: | |
- an instance of a class derived from [`PretrainedConfig`], | |
- a string valid as input to [`~PretrainedConfig.from_pretrained`]. | |
Configuration for the model to use instead of an automatically loaded configuration. Configuration can | |
be automatically loaded when: | |
- The model is a model provided by the library (loaded with the *model id* string of a pretrained | |
model). | |
- The model was saved using [`~TFPreTrainedModel.save_pretrained`] and is reloaded by supplying the | |
save directory. | |
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a | |
configuration JSON file named *config.json* is found in the directory. | |
from_pt (`bool`, *optional*, defaults to `False`): | |
Load the model weights from a PyTorch state_dict save file (see docstring of | |
`pretrained_model_name_or_path` argument). | |
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): | |
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size | |
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a | |
checkpoint with 3 labels). | |
cache_dir (`str`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
standard cache should not be used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
file exists. | |
proxies: | |
(`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., | |
`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info(`bool`, *optional*, defaults to `False`): Whether ot not to also return a | |
dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only(`bool`, *optional*, defaults to `False`): | |
Whether or not to only look at local files (e.g., not try downloading the model). | |
token (`str` or `bool`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use | |
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
<Tip> | |
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". | |
</Tip> | |
mirror (`str`, *optional*): | |
Mirror source to accelerate downloads in China. If you are from China and have an accessibility | |
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. | |
Please refer to the mirror site for more information. | |
subfolder (`str`, *optional*, defaults to `""`): | |
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can | |
specify the folder name here. | |
tf_to_pt_weight_rename (`Callable`, *optional*): | |
A function that is called to transform the names of weights during the PyTorch to TensorFlow | |
crossloading process. This is not necessary for most models, but is useful to allow composite models to | |
be crossloaded correctly. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., | |
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or | |
automatically loaded: | |
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the | |
underlying model's `__init__` method (we assume all relevant updates to the configuration have | |
already been done) | |
- If a configuration is not provided, `kwargs` will be first passed to the configuration class | |
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that | |
corresponds to a configuration attribute will be used to override said attribute with the | |
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute | |
will be passed to the underlying model's `__init__` function. | |
Examples: | |
```python | |
>>> from transformers import BertConfig, TFBertModel | |
>>> # Download model and configuration from huggingface.co and cache. | |
>>> model = TFBertModel.from_pretrained("bert-base-uncased") | |
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable). | |
>>> model = TFBertModel.from_pretrained("./test/saved_model/") | |
>>> # Update configuration during loading. | |
>>> model = TFBertModel.from_pretrained("bert-base-uncased", output_attentions=True) | |
>>> assert model.config.output_attentions == True | |
>>> # Loading from a Pytorch model file instead of a TensorFlow checkpoint (slower, for example purposes, not runnable). | |
>>> config = BertConfig.from_json_file("./pt_model/my_pt_model_config.json") | |
>>> model = TFBertModel.from_pretrained("./pt_model/my_pytorch_model.bin", from_pt=True, config=config) | |
```""" | |
from_pt = kwargs.pop("from_pt", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
output_loading_info = kwargs.pop("output_loading_info", False) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
trust_remote_code = kwargs.pop("trust_remote_code", None) | |
_ = kwargs.pop("mirror", None) | |
load_weight_prefix = kwargs.pop("load_weight_prefix", None) | |
from_pipeline = kwargs.pop("_from_pipeline", None) | |
from_auto_class = kwargs.pop("_from_auto", False) | |
subfolder = kwargs.pop("subfolder", "") | |
commit_hash = kwargs.pop("_commit_hash", None) | |
tf_to_pt_weight_rename = kwargs.pop("tf_to_pt_weight_rename", None) | |
# Not relevant for TF models | |
_ = kwargs.pop("adapter_kwargs", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError( | |
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
) | |
token = use_auth_token | |
if trust_remote_code is True: | |
logger.warning( | |
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is" | |
" ignored." | |
) | |
user_agent = {"file_type": "model", "framework": "tensorflow", "from_auto_class": from_auto_class} | |
if from_pipeline is not None: | |
user_agent["using_pipeline"] = from_pipeline | |
if is_offline_mode() and not local_files_only: | |
logger.info("Offline mode: forcing local_files_only=True") | |
local_files_only = True | |
# Load config if we don't provide a configuration | |
if not isinstance(config, PretrainedConfig): | |
config_path = config if config is not None else pretrained_model_name_or_path | |
config, model_kwargs = cls.config_class.from_pretrained( | |
config_path, | |
cache_dir=cache_dir, | |
return_unused_kwargs=True, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
_from_auto=from_auto_class, | |
_from_pipeline=from_pipeline, | |
_commit_hash=commit_hash, | |
**kwargs, | |
) | |
else: | |
model_kwargs = kwargs | |
if commit_hash is None: | |
commit_hash = getattr(config, "_commit_hash", None) | |
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the | |
# index of the files. | |
is_sharded = False | |
# Load model | |
if pretrained_model_name_or_path is not None: | |
pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
is_local = os.path.isdir(pretrained_model_name_or_path) | |
if is_local: | |
if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): | |
# Load from a PyTorch checkpoint in priority if from_pt | |
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) | |
elif from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)): | |
# Load from a sharded PyTorch checkpoint | |
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME) | |
is_sharded = True | |
elif is_safetensors_available() and os.path.isfile( | |
os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_NAME) | |
): | |
# Load from a safetensors checkpoint | |
archive_file = os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_NAME) | |
elif is_safetensors_available() and os.path.isfile( | |
os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME) | |
): | |
# Load from a sharded safetensors checkpoint | |
archive_file = os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME) | |
is_sharded = True | |
raise NotImplementedError("Support for sharded checkpoints using safetensors is coming soon!") | |
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)): | |
# Load from a TF 2.0 checkpoint | |
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME) | |
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME)): | |
# Load from a sharded TF 2.0 checkpoint | |
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME) | |
is_sharded = True | |
# At this stage we don't have a weight file so we will raise an error. | |
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)) or os.path.isfile( | |
os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME) | |
): | |
raise EnvironmentError( | |
f"Error no file named {TF2_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} " | |
"but there is a file for PyTorch weights. Use `from_pt=True` to load this model from those " | |
"weights." | |
) | |
else: | |
raise EnvironmentError( | |
f"Error no file named {TF2_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory " | |
f"{pretrained_model_name_or_path}." | |
) | |
elif os.path.isfile(pretrained_model_name_or_path): | |
archive_file = pretrained_model_name_or_path | |
is_local = True | |
elif os.path.isfile(pretrained_model_name_or_path + ".index"): | |
archive_file = pretrained_model_name_or_path + ".index" | |
is_local = True | |
elif is_remote_url(pretrained_model_name_or_path): | |
filename = pretrained_model_name_or_path | |
resolved_archive_file = download_url(pretrained_model_name_or_path) | |
else: | |
# set correct filename | |
if from_pt: | |
filename = WEIGHTS_NAME | |
elif is_safetensors_available(): | |
filename = SAFE_WEIGHTS_NAME | |
else: | |
filename = TF2_WEIGHTS_NAME | |
try: | |
# Load from URL or cache if already cached | |
cached_file_kwargs = { | |
"cache_dir": cache_dir, | |
"force_download": force_download, | |
"proxies": proxies, | |
"resume_download": resume_download, | |
"local_files_only": local_files_only, | |
"token": token, | |
"user_agent": user_agent, | |
"revision": revision, | |
"subfolder": subfolder, | |
"_raise_exceptions_for_missing_entries": False, | |
"_commit_hash": commit_hash, | |
} | |
resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs) | |
# Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None | |
# result when internet is up, the repo and revision exist, but the file does not. | |
if resolved_archive_file is None and filename == SAFE_WEIGHTS_NAME: | |
# Maybe the checkpoint is sharded, we try to grab the index name in this case. | |
resolved_archive_file = cached_file( | |
pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME, **cached_file_kwargs | |
) | |
if resolved_archive_file is not None: | |
is_sharded = True | |
raise NotImplementedError( | |
"Support for sharded checkpoints using safetensors is coming soon!" | |
) | |
else: | |
# This repo has no safetensors file of any kind, we switch to TensorFlow. | |
filename = TF2_WEIGHTS_NAME | |
resolved_archive_file = cached_file( | |
pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **cached_file_kwargs | |
) | |
if resolved_archive_file is None and filename == TF2_WEIGHTS_NAME: | |
# Maybe the checkpoint is sharded, we try to grab the index name in this case. | |
resolved_archive_file = cached_file( | |
pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME, **cached_file_kwargs | |
) | |
if resolved_archive_file is not None: | |
is_sharded = True | |
if resolved_archive_file is None and filename == WEIGHTS_NAME: | |
# Maybe the checkpoint is sharded, we try to grab the index name in this case. | |
resolved_archive_file = cached_file( | |
pretrained_model_name_or_path, WEIGHTS_INDEX_NAME, **cached_file_kwargs | |
) | |
if resolved_archive_file is not None: | |
is_sharded = True | |
if resolved_archive_file is None: | |
# Otherwise, maybe there is a PyTorch or Flax model file. We try those to give a helpful error | |
# message. | |
has_file_kwargs = { | |
"revision": revision, | |
"proxies": proxies, | |
"token": token, | |
} | |
if has_file(pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs): | |
raise EnvironmentError( | |
f"{pretrained_model_name_or_path} does not appear to have a file named" | |
f" {TF2_WEIGHTS_NAME} but there is a file for PyTorch weights. Use `from_pt=True` to" | |
" load this model from those weights." | |
) | |
else: | |
raise EnvironmentError( | |
f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME}," | |
f" {TF2_WEIGHTS_NAME} or {TF_WEIGHTS_NAME}" | |
) | |
except EnvironmentError: | |
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted | |
# to the original exception. | |
raise | |
except Exception: | |
# For any other exception, we throw a generic error. | |
raise EnvironmentError( | |
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it" | |
" from 'https://huggingface.co/models', make sure you don't have a local directory with the" | |
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" | |
f" directory containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME} or {TF_WEIGHTS_NAME}" | |
) | |
if is_local: | |
logger.info(f"loading weights file {archive_file}") | |
resolved_archive_file = archive_file | |
filename = resolved_archive_file.split(os.path.sep)[-1] | |
else: | |
logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}") | |
else: | |
resolved_archive_file = None | |
# We'll need to download and cache each checkpoint shard if the checkpoint is sharded. | |
if is_sharded: | |
# resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case. | |
resolved_archive_file, _ = get_checkpoint_shard_files( | |
pretrained_model_name_or_path, | |
resolved_archive_file, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
token=token, | |
user_agent=user_agent, | |
revision=revision, | |
_commit_hash=commit_hash, | |
) | |
safetensors_from_pt = False | |
if filename == SAFE_WEIGHTS_NAME: | |
with safe_open(resolved_archive_file, framework="tf") as f: | |
safetensors_metadata = f.metadata() | |
if safetensors_metadata is None or safetensors_metadata.get("format") not in ["pt", "tf", "flax"]: | |
raise OSError( | |
f"The safetensors archive passed at {resolved_archive_file} does not contain the valid metadata." | |
" Make sure you save your model with the `save_pretrained` method." | |
) | |
safetensors_from_pt = safetensors_metadata.get("format") == "pt" | |
config.name_or_path = pretrained_model_name_or_path | |
# composed models, *e.g.* TFRag, require special treatment when it comes to loading | |
# pre-trained weights. | |
if cls._requires_load_weight_prefix and model_kwargs.get("name") is not None: | |
model_kwargs["load_weight_prefix"] = load_weight_prefix + "/" + model_kwargs.get("name") | |
# Instantiate model. | |
model = cls(config, *model_args, **model_kwargs) | |
if from_pt: | |
from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model | |
# Load from a PyTorch checkpoint | |
return load_pytorch_checkpoint_in_tf2_model( | |
model, | |
resolved_archive_file, | |
allow_missing_keys=True, | |
output_loading_info=output_loading_info, | |
_prefix=load_weight_prefix, | |
tf_to_pt_weight_rename=tf_to_pt_weight_rename, | |
) | |
# we might need to extend the variable scope for composite models | |
if load_weight_prefix is not None: | |
with tf.compat.v1.variable_scope(load_weight_prefix): | |
model.build() # build the network with dummy inputs | |
else: | |
model.build() # build the network with dummy inputs | |
if safetensors_from_pt: | |
from .modeling_tf_pytorch_utils import load_pytorch_state_dict_in_tf2_model | |
with safe_open(resolved_archive_file, framework="tf") as safetensors_archive: | |
# Load from a PyTorch checkpoint | |
# We load in TF format here because PT weights often need to be transposed, and this is much | |
# faster on GPU. Loading as numpy and transposing on CPU adds several seconds to load times. | |
return load_pytorch_state_dict_in_tf2_model( | |
model, | |
safetensors_archive, | |
tf_inputs=False, # No need to build the model again | |
allow_missing_keys=True, | |
output_loading_info=output_loading_info, | |
_prefix=load_weight_prefix, | |
ignore_mismatched_sizes=ignore_mismatched_sizes, | |
) | |
# 'by_name' allow us to do transfer learning by skipping/adding layers | |
# see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357 | |
try: | |
if is_sharded: | |
for file in resolved_archive_file: | |
os.path.isfile(file), f"Error retrieving files {file}" | |
missing_keys, unexpected_keys, mismatched_keys = load_tf_sharded_weights( | |
model, | |
resolved_archive_file, | |
ignore_mismatched_sizes=ignore_mismatched_sizes, | |
_prefix=load_weight_prefix, | |
) | |
else: | |
missing_keys, unexpected_keys, mismatched_keys = load_tf_weights( | |
model, | |
resolved_archive_file, | |
ignore_mismatched_sizes=ignore_mismatched_sizes, | |
_prefix=load_weight_prefix, | |
) | |
except OSError as e: | |
try: | |
with open(resolved_archive_file) as f: | |
if f.read().startswith("version"): | |
raise OSError( | |
"You seem to have cloned a repository without having git-lfs installed. Please install " | |
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder " | |
"you cloned." | |
) | |
else: | |
raise ValueError from e | |
except (UnicodeDecodeError, ValueError): | |
raise OSError( | |
"Unable to load weights from h5 file. " | |
"If you tried to load a TF 2.0 model from a PyTorch checkpoint, please set from_pt=True. " | |
) | |
if cls._keys_to_ignore_on_load_missing is not None: | |
for pat in cls._keys_to_ignore_on_load_missing: | |
missing_keys = [k for k in missing_keys if re.search(pat, k) is None] | |
if cls._keys_to_ignore_on_load_unexpected is not None: | |
for pat in cls._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some layers from the model checkpoint at {pretrained_model_name_or_path} were not used when" | |
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" | |
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or" | |
" with another architecture (e.g. initializing a BertForSequenceClassification model from a" | |
" BertForPreTraining model).\n- This IS NOT expected if you are initializing" | |
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical" | |
" (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." | |
) | |
else: | |
logger.warning(f"All model checkpoint layers were used when initializing {model.__class__.__name__}.\n") | |
if len(missing_keys) > 0: | |
logger.warning( | |
f"Some layers of {model.__class__.__name__} were not initialized from the model checkpoint at" | |
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" | |
" TRAIN this model on a down-stream task to be able to use it for predictions and inference." | |
) | |
elif len(mismatched_keys) == 0: | |
logger.warning( | |
f"All the layers of {model.__class__.__name__} were initialized from the model checkpoint at" | |
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" | |
f" was trained on, you can already use {model.__class__.__name__} for predictions without further" | |
" training." | |
) | |
if len(mismatched_keys) > 0: | |
mismatched_warning = "\n".join( | |
[ | |
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" | |
for key, shape1, shape2 in mismatched_keys | |
] | |
) | |
logger.warning( | |
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" | |
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" | |
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able" | |
" to use it for predictions and inference." | |
) | |
# If it is a model with generation capabilities, attempt to load the generation config | |
if model.can_generate(): | |
try: | |
model.generation_config = GenerationConfig.from_pretrained( | |
pretrained_model_name_or_path, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
_from_auto=from_auto_class, | |
_from_pipeline=from_pipeline, | |
**kwargs, | |
) | |
except OSError: | |
logger.info( | |
"Generation config file not found, using a generation config created from the model config." | |
) | |
pass | |
if output_loading_info: | |
loading_info = { | |
"missing_keys": missing_keys, | |
"unexpected_keys": unexpected_keys, | |
"mismatched_keys": mismatched_keys, | |
} | |
return model, loading_info | |
return model | |
def push_to_hub( | |
self, | |
repo_id: str, | |
use_temp_dir: Optional[bool] = None, | |
commit_message: Optional[str] = None, | |
private: Optional[bool] = None, | |
max_shard_size: Optional[Union[int, str]] = "10GB", | |
token: Optional[Union[bool, str]] = None, | |
# (`use_auth_token` is deprecated: we have to keep it here as we don't have **kwargs) | |
use_auth_token: Optional[Union[bool, str]] = None, | |
create_pr: bool = False, | |
**base_model_card_args, | |
) -> str: | |
""" | |
Upload the model files to the 🤗 Model Hub while synchronizing a local clone of the repo in `repo_path_or_name`. | |
Parameters: | |
repo_id (`str`): | |
The name of the repository you want to push your model to. It should contain your organization name | |
when pushing to a given organization. | |
use_temp_dir (`bool`, *optional*): | |
Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. | |
Will default to `True` if there is no directory named like `repo_id`, `False` otherwise. | |
commit_message (`str`, *optional*): | |
Message to commit while pushing. Will default to `"Upload model"`. | |
private (`bool`, *optional*): | |
Whether or not the repository created should be private. | |
token (`bool` or `str`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` | |
is not specified. | |
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): | |
Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard | |
will then be each of size lower than this size. If expressed as a string, needs to be digits followed | |
by a unit (like `"5MB"`). | |
create_pr (`bool`, *optional*, defaults to `False`): | |
Whether or not to create a PR with the uploaded files or directly commit. | |
Examples: | |
```python | |
from transformers import TFAutoModel | |
model = TFAutoModel.from_pretrained("bert-base-cased") | |
# Push the model to your namespace with the name "my-finetuned-bert". | |
model.push_to_hub("my-finetuned-bert") | |
# Push the model to an organization with the name "my-finetuned-bert". | |
model.push_to_hub("huggingface/my-finetuned-bert") | |
``` | |
""" | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError( | |
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
) | |
token = use_auth_token | |
if "repo_path_or_name" in base_model_card_args: | |
warnings.warn( | |
"The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use " | |
"`repo_id` instead." | |
) | |
repo_id = base_model_card_args.pop("repo_path_or_name") | |
# Deprecation warning will be sent after for repo_url and organization | |
repo_url = base_model_card_args.pop("repo_url", None) | |
organization = base_model_card_args.pop("organization", None) | |
if os.path.isdir(repo_id): | |
working_dir = repo_id | |
repo_id = repo_id.split(os.path.sep)[-1] | |
else: | |
working_dir = repo_id.split("/")[-1] | |
repo_id = self._create_repo( | |
repo_id, private=private, token=token, repo_url=repo_url, organization=organization | |
) | |
if use_temp_dir is None: | |
use_temp_dir = not os.path.isdir(working_dir) | |
with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir: | |
files_timestamps = self._get_files_timestamps(work_dir) | |
# Save all files. | |
self.save_pretrained(work_dir, max_shard_size=max_shard_size) | |
if hasattr(self, "history") and hasattr(self, "create_model_card"): | |
# This is a Keras model and we might be able to fish out its History and make a model card out of it | |
base_model_card_args = { | |
"output_dir": work_dir, | |
"model_name": Path(repo_id).name, | |
} | |
base_model_card_args.update(base_model_card_args) | |
self.create_model_card(**base_model_card_args) | |
self._upload_modified_files( | |
work_dir, | |
repo_id, | |
files_timestamps, | |
commit_message=commit_message, | |
token=token, | |
create_pr=create_pr, | |
) | |
def register_for_auto_class(cls, auto_class="TFAutoModel"): | |
""" | |
Register this class with a given auto class. This should only be used for custom models as the ones in the | |
library are already mapped with an auto class. | |
<Tip warning={true}> | |
This API is experimental and may have some slight breaking changes in the next releases. | |
</Tip> | |
Args: | |
auto_class (`str` or `type`, *optional*, defaults to `"TFAutoModel"`): | |
The auto class to register this new model with. | |
""" | |
if not isinstance(auto_class, str): | |
auto_class = auto_class.__name__ | |
import transformers.models.auto as auto_module | |
if not hasattr(auto_module, auto_class): | |
raise ValueError(f"{auto_class} is not a valid auto class.") | |
cls._auto_class = auto_class | |
class TFConv1D(tf.keras.layers.Layer): | |
""" | |
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2). | |
Basically works like a linear layer but the weights are transposed. | |
Args: | |
nf (`int`): | |
The number of output features. | |
nx (`int`): | |
The number of input features. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation to use to initialize the weights. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`. | |
""" | |
def __init__(self, nf, nx, initializer_range=0.02, **kwargs): | |
super().__init__(**kwargs) | |
self.nf = nf | |
self.nx = nx | |
self.initializer_range = initializer_range | |
def build(self, input_shape): | |
self.weight = self.add_weight( | |
"weight", shape=[self.nx, self.nf], initializer=get_initializer(self.initializer_range) | |
) | |
self.bias = self.add_weight("bias", shape=[1, self.nf], initializer=tf.zeros_initializer()) | |
def call(self, x): | |
bz, sl = shape_list(x)[:2] | |
x = tf.reshape(x, [-1, self.nx]) | |
x = tf.matmul(x, self.weight) + self.bias | |
x = tf.reshape(x, [bz, sl, self.nf]) | |
return x | |
class TFSharedEmbeddings(tf.keras.layers.Layer): | |
r""" | |
Construct shared token embeddings. | |
The weights of the embedding layer is usually shared with the weights of the linear decoder when doing language | |
modeling. | |
Args: | |
vocab_size (`int`): | |
The size of the vocabulary, e.g., the number of unique tokens. | |
hidden_size (`int`): | |
The size of the embedding vectors. | |
initializer_range (`float`, *optional*): | |
The standard deviation to use when initializing the weights. If no value is provided, it will default to | |
\\(1/\sqrt{hidden\_size}\\). | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`. | |
""" | |
# TODO (joao): flagged for delection due to embeddings refactor | |
def __init__(self, vocab_size: int, hidden_size: int, initializer_range: Optional[float] = None, **kwargs): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.initializer_range = hidden_size**-0.5 if initializer_range is None else initializer_range | |
warnings.warn( | |
"`TFSharedEmbeddings` is scheduled for deletion in v4.32, use `tf.keras.layers.Embedding` instead.", | |
DeprecationWarning, | |
) | |
def build(self, input_shape): | |
""" | |
Build shared token embedding layer Shared weights logic adapted from | |
https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 | |
""" | |
self.weight = self.add_weight( | |
"weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range) | |
) | |
super().build(input_shape) | |
def get_config(self): | |
config = { | |
"vocab_size": self.vocab_size, | |
"hidden_size": self.hidden_size, | |
"initializer_range": self.initializer_range, | |
} | |
base_config = super().get_config() | |
return dict(list(base_config.items()) + list(config.items())) | |
def call(self, inputs: tf.Tensor, mode: str = "embedding") -> tf.Tensor: | |
""" | |
Get token embeddings of inputs or decode final hidden state. | |
Args: | |
inputs (`tf.Tensor`): | |
In embedding mode, should be an int64 tensor with shape `[batch_size, length]`. | |
In linear mode, should be a float tensor with shape `[batch_size, length, hidden_size]`. | |
mode (`str`, defaults to `"embedding"`): | |
A valid value is either `"embedding"` or `"linear"`, the first one indicates that the layer should be | |
used as an embedding layer, the second one that the layer should be used as a linear decoder. | |
Returns: | |
`tf.Tensor`: In embedding mode, the output is a float32 embedding tensor, with shape `[batch_size, length, | |
embedding_size]`. | |
In linear mode, the output is a float32 with shape `[batch_size, length, vocab_size]`. | |
Raises: | |
ValueError: if `mode` is not valid. | |
Shared weights logic is adapted from | |
[here](https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24). | |
""" | |
if mode == "embedding": | |
return self._embedding(inputs) | |
elif mode == "linear": | |
return self._linear(inputs) | |
else: | |
raise ValueError(f"mode {mode} is not valid.") | |
def _embedding(self, input_ids): | |
"""Applies embedding based on inputs tensor.""" | |
return tf.gather(self.weight, input_ids) | |
def _linear(self, inputs): | |
""" | |
Computes logits by running inputs through a linear layer. | |
Args: | |
inputs: A float32 tensor with shape [..., hidden_size] | |
Returns: | |
float32 tensor with shape [..., vocab_size]. | |
""" | |
first_dims = shape_list(inputs)[:-1] | |
x = tf.reshape(inputs, [-1, self.hidden_size]) | |
logits = tf.matmul(x, self.weight, transpose_b=True) | |
return tf.reshape(logits, first_dims + [self.vocab_size]) | |
class TFSequenceSummary(tf.keras.layers.Layer): | |
""" | |
Compute a single vector summary of a sequence hidden states. | |
Args: | |
config ([`PretrainedConfig`]): | |
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual | |
config class of your model for the default values it uses): | |
- **summary_type** (`str`) -- The method to use to make this summary. Accepted values are: | |
- `"last"` -- Take the last token hidden state (like XLNet) | |
- `"first"` -- Take the first token hidden state (like Bert) | |
- `"mean"` -- Take the mean of all tokens hidden states | |
- `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2) | |
- `"attn"` -- Not implemented now, use multi-head attention | |
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction. | |
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes | |
(otherwise to `config.hidden_size`). | |
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output, | |
another string or `None` will add no activation. | |
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation. | |
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation. | |
initializer_range (`float`, defaults to 0.02): The standard deviation to use to initialize the weights. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`. | |
""" | |
def __init__(self, config: PretrainedConfig, initializer_range: float = 0.02, **kwargs): | |
super().__init__(**kwargs) | |
self.summary_type = config.summary_type if hasattr(config, "summary_use_proj") else "last" | |
if self.summary_type == "attn": | |
# We should use a standard multi-head attention module with absolute positional embedding for that. | |
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 | |
# We can probably just use the multi-head attention module of PyTorch >=1.1.0 | |
raise NotImplementedError | |
self.has_summary = hasattr(config, "summary_use_proj") and config.summary_use_proj | |
if self.has_summary: | |
if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: | |
num_classes = config.num_labels | |
else: | |
num_classes = config.hidden_size | |
self.summary = tf.keras.layers.Dense( | |
num_classes, kernel_initializer=get_initializer(initializer_range), name="summary" | |
) | |
self.has_activation = False | |
activation_string = getattr(config, "summary_activation", None) | |
if activation_string is not None: | |
self.has_activation = True | |
self.activation = get_tf_activation(activation_string) | |
self.has_first_dropout = hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0 | |
if self.has_first_dropout: | |
self.first_dropout = tf.keras.layers.Dropout(config.summary_first_dropout) | |
self.has_last_dropout = hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0 | |
if self.has_last_dropout: | |
self.last_dropout = tf.keras.layers.Dropout(config.summary_last_dropout) | |
def call(self, inputs, cls_index=None, training=False): | |
if not isinstance(inputs, (dict, tuple, list)): | |
hidden_states = inputs | |
elif isinstance(inputs, (tuple, list)): | |
hidden_states = inputs[0] | |
cls_index = inputs[1] if len(inputs) > 1 else None | |
assert len(inputs) <= 2, "Too many inputs." | |
else: | |
hidden_states = inputs.get("hidden_states") | |
cls_index = inputs.get("cls_index", None) | |
if self.summary_type == "last": | |
output = hidden_states[:, -1] | |
elif self.summary_type == "first": | |
output = hidden_states[:, 0] | |
elif self.summary_type == "mean": | |
output = tf.reduce_mean(hidden_states, axis=1) | |
elif self.summary_type == "cls_index": | |
hidden_shape = shape_list(hidden_states) # e.g. [batch, num choices, seq length, hidden dims] | |
if cls_index is None: | |
cls_index = tf.fill( | |
hidden_shape[:-2], hidden_shape[-2] - 1 | |
) # A tensor full of shape [batch] or [batch, num choices] full of sequence length | |
cls_shape = shape_list(cls_index) | |
if len(cls_shape) <= len(hidden_shape) - 2: | |
cls_index = tf.expand_dims(cls_index, axis=-1) | |
# else: | |
# cls_index = cls_index[..., tf.newaxis] | |
# cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),)) | |
# shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states | |
output = tf.gather(hidden_states, cls_index, batch_dims=len(hidden_shape) - 2) | |
output = tf.squeeze( | |
output, axis=len(hidden_shape) - 2 | |
) # shape of output: (batch, num choices, hidden_size) | |
elif self.summary_type == "attn": | |
raise NotImplementedError | |
if self.has_first_dropout: | |
output = self.first_dropout(output, training=training) | |
if self.has_summary: | |
output = self.summary(output) | |
if self.has_activation: | |
output = self.activation(output) | |
if self.has_last_dropout: | |
output = self.last_dropout(output, training=training) | |
return output | |
def get_initializer(initializer_range: float = 0.02) -> tf.keras.initializers.TruncatedNormal: | |
""" | |
Creates a `tf.keras.initializers.TruncatedNormal` with the given range. | |
Args: | |
initializer_range (*float*, defaults to 0.02): Standard deviation of the initializer range. | |
Returns: | |
`tf.keras.initializers.TruncatedNormal`: The truncated normal initializer. | |
""" | |
return tf.keras.initializers.TruncatedNormal(stddev=initializer_range) | |