Spaces:
Running
on
T4
Running
on
T4
from typing import List, Union | |
from ..utils import ( | |
add_end_docstrings, | |
is_tf_available, | |
is_torch_available, | |
is_vision_available, | |
logging, | |
requires_backends, | |
) | |
from .base import PIPELINE_INIT_ARGS, Pipeline | |
if is_vision_available(): | |
from PIL import Image | |
from ..image_utils import load_image | |
if is_tf_available(): | |
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES | |
if is_torch_available(): | |
import torch | |
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES | |
logger = logging.get_logger(__name__) | |
class ImageToTextPipeline(Pipeline): | |
""" | |
Image To Text pipeline using a `AutoModelForVision2Seq`. This pipeline predicts a caption for a given image. | |
Example: | |
```python | |
>>> from transformers import pipeline | |
>>> captioner = pipeline(model="ydshieh/vit-gpt2-coco-en") | |
>>> captioner("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") | |
[{'generated_text': 'two birds are standing next to each other '}] | |
``` | |
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) | |
This image to text pipeline can currently be loaded from pipeline() using the following task identifier: | |
"image-to-text". | |
See the list of available models on | |
[huggingface.co/models](https://huggingface.co/models?pipeline_tag=image-to-text). | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
requires_backends(self, "vision") | |
self.check_model_type( | |
TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES | |
) | |
def _sanitize_parameters(self, max_new_tokens=None, generate_kwargs=None, prompt=None, timeout=None): | |
forward_kwargs = {} | |
preprocess_params = {} | |
if prompt is not None: | |
preprocess_params["prompt"] = prompt | |
if timeout is not None: | |
preprocess_params["timeout"] = timeout | |
if generate_kwargs is not None: | |
forward_kwargs["generate_kwargs"] = generate_kwargs | |
if max_new_tokens is not None: | |
if "generate_kwargs" not in forward_kwargs: | |
forward_kwargs["generate_kwargs"] = {} | |
if "max_new_tokens" in forward_kwargs["generate_kwargs"]: | |
raise ValueError( | |
"'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," | |
" please use only one" | |
) | |
forward_kwargs["generate_kwargs"]["max_new_tokens"] = max_new_tokens | |
return preprocess_params, forward_kwargs, {} | |
def __call__(self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs): | |
""" | |
Assign labels to the image(s) passed as inputs. | |
Args: | |
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): | |
The pipeline handles three types of images: | |
- A string containing a HTTP(s) link pointing to an image | |
- A string containing a local path to an image | |
- An image loaded in PIL directly | |
The pipeline accepts either a single image or a batch of images. | |
max_new_tokens (`int`, *optional*): | |
The amount of maximum tokens to generate. By default it will use `generate` default. | |
generate_kwargs (`Dict`, *optional*): | |
Pass it to send all of these arguments directly to `generate` allowing full control of this function. | |
timeout (`float`, *optional*, defaults to None): | |
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and | |
the call may block forever. | |
Return: | |
A list or a list of list of `dict`: Each result comes as a dictionary with the following key: | |
- **generated_text** (`str`) -- The generated text. | |
""" | |
return super().__call__(images, **kwargs) | |
def preprocess(self, image, prompt=None, timeout=None): | |
image = load_image(image, timeout=timeout) | |
if prompt is not None: | |
if not isinstance(prompt, str): | |
raise ValueError( | |
f"Received an invalid text input, got - {type(prompt)} - but expected a single string. " | |
"Note also that one single text can be provided for conditional image to text generation." | |
) | |
model_type = self.model.config.model_type | |
if model_type == "git": | |
model_inputs = self.image_processor(images=image, return_tensors=self.framework) | |
input_ids = self.tokenizer(text=prompt, add_special_tokens=False).input_ids | |
input_ids = [self.tokenizer.cls_token_id] + input_ids | |
input_ids = torch.tensor(input_ids).unsqueeze(0) | |
model_inputs.update({"input_ids": input_ids}) | |
elif model_type == "pix2struct": | |
model_inputs = self.image_processor(images=image, header_text=prompt, return_tensors=self.framework) | |
elif model_type != "vision-encoder-decoder": | |
# vision-encoder-decoder does not support conditional generation | |
model_inputs = self.image_processor(images=image, return_tensors=self.framework) | |
text_inputs = self.tokenizer(prompt, return_tensors=self.framework) | |
model_inputs.update(text_inputs) | |
else: | |
raise ValueError(f"Model type {model_type} does not support conditional text generation") | |
else: | |
model_inputs = self.image_processor(images=image, return_tensors=self.framework) | |
if self.model.config.model_type == "git" and prompt is None: | |
model_inputs["input_ids"] = None | |
return model_inputs | |
def _forward(self, model_inputs, generate_kwargs=None): | |
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the | |
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. | |
if ( | |
"input_ids" in model_inputs | |
and isinstance(model_inputs["input_ids"], list) | |
and all(x is None for x in model_inputs["input_ids"]) | |
): | |
model_inputs["input_ids"] = None | |
if generate_kwargs is None: | |
generate_kwargs = {} | |
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` | |
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas | |
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` | |
# in the `_prepare_model_inputs` method. | |
inputs = model_inputs.pop(self.model.main_input_name) | |
model_outputs = self.model.generate(inputs, **model_inputs, **generate_kwargs) | |
return model_outputs | |
def postprocess(self, model_outputs): | |
records = [] | |
for output_ids in model_outputs: | |
record = { | |
"generated_text": self.tokenizer.decode( | |
output_ids, | |
skip_special_tokens=True, | |
) | |
} | |
records.append(record) | |
return records | |