|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from argparse import ArgumentParser, Namespace |
|
|
|
from ..data import SingleSentenceClassificationProcessor as Processor |
|
from ..pipelines import TextClassificationPipeline |
|
from ..utils import is_tf_available, is_torch_available, logging |
|
from . import BaseTransformersCLICommand |
|
|
|
|
|
if not is_tf_available() and not is_torch_available(): |
|
raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") |
|
|
|
|
|
USE_XLA = False |
|
USE_AMP = False |
|
|
|
|
|
def train_command_factory(args: Namespace): |
|
""" |
|
Factory function used to instantiate training command from provided command line arguments. |
|
|
|
Returns: TrainCommand |
|
""" |
|
return TrainCommand(args) |
|
|
|
|
|
class TrainCommand(BaseTransformersCLICommand): |
|
@staticmethod |
|
def register_subcommand(parser: ArgumentParser): |
|
""" |
|
Register this command to argparse so it's available for the transformer-cli |
|
|
|
Args: |
|
parser: Root parser to register command-specific arguments |
|
""" |
|
train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.") |
|
|
|
train_parser.add_argument( |
|
"--train_data", |
|
type=str, |
|
required=True, |
|
help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.", |
|
) |
|
train_parser.add_argument( |
|
"--column_label", type=int, default=0, help="Column of the dataset csv file with example labels." |
|
) |
|
train_parser.add_argument( |
|
"--column_text", type=int, default=1, help="Column of the dataset csv file with example texts." |
|
) |
|
train_parser.add_argument( |
|
"--column_id", type=int, default=2, help="Column of the dataset csv file with example ids." |
|
) |
|
train_parser.add_argument( |
|
"--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)." |
|
) |
|
|
|
train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.") |
|
train_parser.add_argument( |
|
"--validation_split", |
|
type=float, |
|
default=0.1, |
|
help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.", |
|
) |
|
|
|
train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.") |
|
|
|
train_parser.add_argument( |
|
"--task", type=str, default="text_classification", help="Task to train the model on." |
|
) |
|
train_parser.add_argument( |
|
"--model", type=str, default="bert-base-uncased", help="Model's name or path to stored model." |
|
) |
|
train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.") |
|
train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.") |
|
train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.") |
|
train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.") |
|
train_parser.set_defaults(func=train_command_factory) |
|
|
|
def __init__(self, args: Namespace): |
|
self.logger = logging.get_logger("transformers-cli/training") |
|
|
|
self.framework = "tf" if is_tf_available() else "torch" |
|
|
|
os.makedirs(args.output, exist_ok=True) |
|
self.output = args.output |
|
|
|
self.column_label = args.column_label |
|
self.column_text = args.column_text |
|
self.column_id = args.column_id |
|
|
|
self.logger.info(f"Loading {args.task} pipeline for {args.model}") |
|
if args.task == "text_classification": |
|
self.pipeline = TextClassificationPipeline.from_pretrained(args.model) |
|
elif args.task == "token_classification": |
|
raise NotImplementedError |
|
elif args.task == "question_answering": |
|
raise NotImplementedError |
|
|
|
self.logger.info(f"Loading dataset from {args.train_data}") |
|
self.train_dataset = Processor.create_from_csv( |
|
args.train_data, |
|
column_label=args.column_label, |
|
column_text=args.column_text, |
|
column_id=args.column_id, |
|
skip_first_row=args.skip_first_row, |
|
) |
|
self.valid_dataset = None |
|
if args.validation_data: |
|
self.logger.info(f"Loading validation dataset from {args.validation_data}") |
|
self.valid_dataset = Processor.create_from_csv( |
|
args.validation_data, |
|
column_label=args.column_label, |
|
column_text=args.column_text, |
|
column_id=args.column_id, |
|
skip_first_row=args.skip_first_row, |
|
) |
|
|
|
self.validation_split = args.validation_split |
|
self.train_batch_size = args.train_batch_size |
|
self.valid_batch_size = args.valid_batch_size |
|
self.learning_rate = args.learning_rate |
|
self.adam_epsilon = args.adam_epsilon |
|
|
|
def run(self): |
|
if self.framework == "tf": |
|
return self.run_tf() |
|
return self.run_torch() |
|
|
|
def run_torch(self): |
|
raise NotImplementedError |
|
|
|
def run_tf(self): |
|
self.pipeline.fit( |
|
self.train_dataset, |
|
validation_data=self.valid_dataset, |
|
validation_split=self.validation_split, |
|
learning_rate=self.learning_rate, |
|
adam_epsilon=self.adam_epsilon, |
|
train_batch_size=self.train_batch_size, |
|
valid_batch_size=self.valid_batch_size, |
|
) |
|
|
|
|
|
self.pipeline.save_pretrained(self.output) |
|
|