liuyizhang
add transformers_4_35_0
1ce5e18
raw
history blame
32.6 kB
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import dataclasses
import warnings
from abc import ABC, abstractmethod
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Mapping, Optional, Tuple, Union
import numpy as np
from packaging import version
from ..utils import TensorType, is_torch_available, is_vision_available, logging
from .utils import ParameterFormat, compute_effective_axis_dimension, compute_serialized_parameters_size
if TYPE_CHECKING:
from ..configuration_utils import PretrainedConfig
from ..feature_extraction_utils import FeatureExtractionMixin
from ..image_processing_utils import ImageProcessingMixin
from ..tokenization_utils_base import PreTrainedTokenizerBase
if is_vision_available():
from PIL import Image
logger = logging.get_logger(__name__)
DEFAULT_ONNX_OPSET = 11
# 2 Gb
EXTERNAL_DATA_FORMAT_SIZE_LIMIT = 2 * 1024 * 1024 * 1024
@dataclasses.dataclass
class PatchingSpec:
"""
Data class that holds patching specifications.
Args:
o: Module / object where the op to patch is located
name: Name of the op to monkey patch
custom_op: Custom op that patches the original op
orig_op: Original op that is being patched
op_wrapper: Wrapper (optional) that wraps both the original and custom ops.
It is useful for ops that are class or static methods for instance.
"""
o: Any
name: str
custom_op: Callable
orig_op: Optional[Callable] = None
op_wrapper: Optional[Callable] = None
class OnnxConfig(ABC):
"""
Base class for ONNX exportable model describing metadata on how to export the model through the ONNX format.
"""
default_fixed_batch = 2
default_fixed_sequence = 8
default_fixed_num_choices = 4
torch_onnx_minimum_version = version.parse("1.8")
_tasks_to_common_outputs = {
"causal-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"default": OrderedDict({"last_hidden_state": {0: "batch", 1: "sequence"}}),
"image-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"image-segmentation": OrderedDict(
{
"logits": {0: "batch", 1: "sequence"},
"pred_boxes": {0: "batch", 1: "sequence"},
"pred_masks": {0: "batch", 1: "sequence"},
}
),
"masked-im": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"masked-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"multiple-choice": OrderedDict({"logits": {0: "batch"}}),
"object-detection": OrderedDict(
{
"logits": {0: "batch", 1: "sequence"},
"pred_boxes": {0: "batch", 1: "sequence"},
}
),
"question-answering": OrderedDict(
{
"start_logits": {0: "batch", 1: "sequence"},
"end_logits": {0: "batch", 1: "sequence"},
}
),
"semantic-segmentation": OrderedDict({"logits": {0: "batch", 1: "num_labels", 2: "height", 3: "width"}}),
"seq2seq-lm": OrderedDict({"logits": {0: "batch", 1: "decoder_sequence"}}),
"sequence-classification": OrderedDict({"logits": {0: "batch"}}),
"token-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"vision2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"speech2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
}
def __init__(self, config: "PretrainedConfig", task: str = "default", patching_specs: List[PatchingSpec] = None):
self._config = config
if task not in self._tasks_to_common_outputs:
raise ValueError(
f"{task} is not a supported task, supported tasks: {self._tasks_to_common_outputs.keys()}"
)
self.task = task
self._patching_specs = []
for spec in patching_specs if patching_specs is not None else []:
final_spec = spec
if spec.orig_op is None:
final_spec = dataclasses.replace(spec, orig_op=getattr(spec.o, spec.name))
self._patching_specs.append(final_spec)
@classmethod
def from_model_config(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfig":
"""
Instantiate a OnnxConfig for a specific model
Args:
config: The model's configuration to use when exporting to ONNX
Returns:
OnnxConfig for this model
"""
return cls(config, task=task)
@property
@abstractmethod
def inputs(self) -> Mapping[str, Mapping[int, str]]:
"""
Mapping containing the axis definition of the input tensors to provide to the model
Returns:
For each input: its name associated to the axes symbolic name and the axis position within the tensor
"""
raise NotImplementedError()
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
"""
Mapping containing the axis definition of the output tensors to provide to the model
Returns:
For each output: its name associated to the axes symbolic name and the axis position within the tensor
"""
common_outputs = self._tasks_to_common_outputs[self.task]
return copy.deepcopy(common_outputs)
@property
def values_override(self) -> Optional[Mapping[str, Any]]:
"""
Dictionary of keys to override in the model's config before exporting
Returns:
Dictionary with the keys (and their corresponding values) to override
"""
if hasattr(self._config, "use_cache"):
return {"use_cache": False}
return None
@property
def default_batch_size(self) -> int:
"""
The default batch size to use if no other indication
Returns:
Integer > 0
"""
# Using 2 avoid ONNX making assumption about single sample batch
return OnnxConfig.default_fixed_batch
@property
def default_sequence_length(self) -> int:
"""
The default sequence length to use if no other indication
Returns:
Integer > 0
"""
return OnnxConfig.default_fixed_sequence
@property
def default_num_choices(self) -> int:
"""
The default number of choices to use if no other indication
Returns:
Integer > 0
"""
return OnnxConfig.default_fixed_num_choices
@property
def default_onnx_opset(self) -> int:
"""
Which onnx opset to use when exporting the model
Returns:
Integer ONNX Opset version
"""
return DEFAULT_ONNX_OPSET
@property
def atol_for_validation(self) -> float:
"""
What absolute tolerance value to use during model conversion validation.
Returns:
Float absolute tolerance value.
"""
return 1e-5
@property
def is_torch_support_available(self) -> bool:
"""
The minimum PyTorch version required to export the model.
Returns:
`bool`: Whether the installed version of PyTorch is compatible with the model.
"""
if is_torch_available():
from transformers.utils import get_torch_version
return version.parse(get_torch_version()) >= self.torch_onnx_minimum_version
else:
return False
@staticmethod
def use_external_data_format(num_parameters: int) -> bool:
"""
Flag indicating if the model requires using external data format
Args:
num_parameters: Number of parameter on the model
Returns:
True if model.num_parameters() * size_of(float32) >= 2Gb False otherwise
"""
return (
compute_serialized_parameters_size(num_parameters, ParameterFormat.Float)
>= EXTERNAL_DATA_FORMAT_SIZE_LIMIT
)
def _generate_dummy_images(
self, batch_size: int = 2, num_channels: int = 3, image_height: int = 40, image_width: int = 40
):
images = []
for _ in range(batch_size):
data = np.random.rand(image_height, image_width, num_channels) * 255
images.append(Image.fromarray(data.astype("uint8")).convert("RGB"))
return images
def _generate_dummy_audio(
self, batch_size: int = 2, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220
):
audio_data = []
for _ in range(batch_size):
# time variable
t = np.linspace(0, time_duration, int(time_duration * sampling_rate), endpoint=False)
# generate pure sine wave at `frequency` Hz
audio_data.append(0.5 * np.sin(2 * np.pi * frequency * t))
return audio_data
def generate_dummy_inputs(
self,
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin", "ImageProcessingMixin"],
batch_size: int = -1,
seq_length: int = -1,
num_choices: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
num_channels: int = 3,
image_width: int = 40,
image_height: int = 40,
sampling_rate: int = 22050,
time_duration: float = 5.0,
frequency: int = 220,
tokenizer: "PreTrainedTokenizerBase" = None,
) -> Mapping[str, Any]:
"""
Generate inputs to provide to the ONNX exporter for the specific framework
Args:
preprocessor: ([`PreTrainedTokenizerBase`], [`FeatureExtractionMixin`], or [`ImageProcessingMixin`]):
The preprocessor associated with this model configuration.
batch_size (`int`, *optional*, defaults to -1):
The batch size to export the model for (-1 means dynamic axis).
num_choices (`int`, *optional*, defaults to -1):
The number of candidate answers provided for multiple choice task (-1 means dynamic axis).
seq_length (`int`, *optional*, defaults to -1):
The sequence length to export the model for (-1 means dynamic axis).
is_pair (`bool`, *optional*, defaults to `False`):
Indicate if the input is a pair (sentence 1, sentence 2)
framework (`TensorType`, *optional*, defaults to `None`):
The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for.
num_channels (`int`, *optional*, defaults to 3):
The number of channels of the generated images.
image_width (`int`, *optional*, defaults to 40):
The width of the generated images.
image_height (`int`, *optional*, defaults to 40):
The height of the generated images.
sampling_rate (`int`, *optional* defaults to 22050)
The sampling rate for audio data generation.
time_duration (`float`, *optional* defaults to 5.0)
Total seconds of sampling for audio data generation.
frequency (`int`, *optional* defaults to 220)
The desired natural frequency of generated audio.
Returns:
Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
"""
from ..feature_extraction_utils import FeatureExtractionMixin
from ..image_processing_utils import ImageProcessingMixin
from ..tokenization_utils_base import PreTrainedTokenizerBase
if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
raise ValueError("You cannot provide both a tokenizer and a preprocessor to generate dummy inputs.")
if tokenizer is not None:
warnings.warn(
"The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
" `preprocessor` instead.",
FutureWarning,
)
logger.warning("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
preprocessor = tokenizer
if isinstance(preprocessor, PreTrainedTokenizerBase):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = preprocessor.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
input_token = (
preprocessor.unk_token
if (preprocessor.unk_token is not None and len(preprocessor.unk_token) > 0)
else "0"
)
dummy_input = [" ".join([input_token]) * seq_length] * batch_size
if self.task == "multiple-choice":
# If dynamic axis (-1) we forward with a fixed dimension of 4 candidate answers to avoid optimizations
# made by ONNX
num_choices = compute_effective_axis_dimension(
num_choices, fixed_dimension=OnnxConfig.default_fixed_num_choices, num_token_to_add=0
)
dummy_input = dummy_input * num_choices
# The shape of the tokenized inputs values is [batch_size * num_choices, seq_length]
tokenized_input = preprocessor(dummy_input, text_pair=dummy_input)
# Unflatten the tokenized inputs values expanding it to the shape [batch_size, num_choices, seq_length]
for k, v in tokenized_input.items():
tokenized_input[k] = [v[i : i + num_choices] for i in range(0, len(v), num_choices)]
return dict(tokenized_input.convert_to_tensors(tensor_type=framework))
return dict(preprocessor(dummy_input, return_tensors=framework))
elif isinstance(preprocessor, ImageProcessingMixin):
if preprocessor.model_input_names[0] != "pixel_values":
raise ValueError(
f"The `preprocessor` is an image processor ({preprocessor.__class__.__name__}) and expects"
f' `model_input_names[0]` to be "pixel_values", but got {preprocessor.model_input_names[0]}'
)
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
return dict(preprocessor(images=dummy_input, return_tensors=framework))
elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
return dict(preprocessor(images=dummy_input, return_tensors=framework))
elif (
isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "input_features"
):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
dummy_input = self._generate_dummy_audio(batch_size, sampling_rate, time_duration, frequency)
return dict(preprocessor(dummy_input, return_tensors=framework))
else:
raise ValueError(
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor."
)
def generate_dummy_inputs_onnxruntime(self, reference_model_inputs: Mapping[str, Any]) -> Mapping[str, Any]:
"""
Generate inputs for ONNX Runtime using the reference model inputs. Override this to run inference with seq2seq
models which have the encoder and decoder exported as separate ONNX files.
Args:
reference_model_inputs ([`Mapping[str, Tensor]`):
Reference inputs for the model.
Returns:
`Mapping[str, Tensor]`: The mapping holding the kwargs to provide to the model's forward function
"""
return reference_model_inputs
def patch_ops(self):
for spec in self._patching_specs:
custom_op = spec.custom_op if spec.op_wrapper is None else spec.op_wrapper(spec.custom_op)
setattr(spec.o, spec.name, custom_op)
def restore_ops(self):
for spec in self._patching_specs:
orig_op = spec.orig_op if spec.op_wrapper is None else spec.op_wrapper(spec.orig_op)
setattr(spec.o, spec.name, orig_op)
@classmethod
def flatten_output_collection_property(cls, name: str, field: Iterable[Any]) -> Dict[str, Any]:
"""
Flatten any potential nested structure expanding the name of the field with the index of the element within the
structure.
Args:
name: The name of the nested structure
field: The structure to, potentially, be flattened
Returns:
(Dict[str, Any]): Outputs with flattened structure and key mapping this new structure.
"""
from itertools import chain
return {f"{name}.{idx}": item for idx, item in enumerate(chain.from_iterable(field))}
class OnnxConfigWithPast(OnnxConfig, ABC):
def __init__(
self,
config: "PretrainedConfig",
task: str = "default",
patching_specs: List[PatchingSpec] = None,
use_past: bool = False,
):
super().__init__(config, task=task, patching_specs=patching_specs)
self.use_past = use_past
@classmethod
def with_past(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfigWithPast":
"""
Instantiate a OnnxConfig with `use_past` attribute set to True
Args:
config: The underlying model's config to use when exporting to ONNX
Returns:
OnnxConfig with `.use_past = True`
"""
return cls(config, task=task, use_past=True)
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
common_outputs = super().outputs
if self.use_past:
self.fill_with_past_key_values_(common_outputs, direction="outputs")
return common_outputs
@property
def values_override(self) -> Optional[Mapping[str, Any]]:
if hasattr(self._config, "use_cache"):
return {"use_cache": self.use_past}
return None
@property
def num_layers(self) -> int:
"""
The number of layers attribute retrieved from the model config. Override this for model configs where the
number of layers attribute is not called `num_layers`.
"""
if not hasattr(self._config, "num_layers"):
raise AttributeError(
"could not find the number of layers attribute in the model configuration, override the num_layers"
" property of the model OnnxConfig to solve this"
)
return self._config.num_layers
@property
def num_attention_heads(self) -> int:
"""
The number of attention heads attribute retrieved from the model config. Override this for model configs where
the number of attention heads attribute is not called `num_attention_heads`.
"""
if not hasattr(self._config, "num_attention_heads"):
raise AttributeError(
"could not find the number of attention heads attribute in the model configuration, override the"
" num_attention_heads property of the model OnnxConfig to solve this"
)
return self._config.num_attention_heads
def generate_dummy_inputs(
self,
tokenizer: "PreTrainedTokenizerBase",
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
# TODO: should we set seq_length = 1 when self.use_past = True?
common_inputs = super().generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
shape = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
if "attention_mask" in common_inputs:
mask_dtype = common_inputs["attention_mask"].dtype
common_inputs["attention_mask"] = torch.cat(
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)],
dim=1,
)
common_inputs["past_key_values"] = []
for _ in range(self.num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
def fill_with_past_key_values_(
self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str, inverted_values_shape: bool = False
):
"""
Fill the input_or_outputs mapping with past_key_values dynamic axes considering.
Args:
inputs_or_outputs: The mapping to fill.
direction: either "inputs" or "outputs", it specifies whether input_or_outputs is the input mapping or the
output mapping, this is important for axes naming.
inverted_values_shape:
If `True`, store values on dynamic axis 1, else on axis 2.
"""
if direction not in ["inputs", "outputs"]:
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
name = "past_key_values" if direction == "inputs" else "present"
for i in range(self.num_layers):
inputs_or_outputs[f"{name}.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
if inverted_values_shape:
inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 1: "past_sequence + sequence"}
else:
inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
flattened_output[f"{name}.{idx}.key"] = t[0]
flattened_output[f"{name}.{idx}.value"] = t[1]
def flatten_output_collection_property(self, name: str, field: Iterable[Any]) -> Dict[str, Any]:
flattened_output = {}
if name in ["present", "past_key_values"]:
for idx, t in enumerate(field):
self._flatten_past_key_values_(flattened_output, name, idx, t)
else:
flattened_output = super().flatten_output_collection_property(name, field)
return flattened_output
class OnnxSeq2SeqConfigWithPast(OnnxConfigWithPast):
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
common_outputs = super(OnnxConfigWithPast, self).outputs
# Renaming the outputs axes properly.
for name, axes_names in common_outputs.items():
sequence_name = "encoder_sequence" if "encoder" in name else "decoder_sequence"
for axis_idx, name in axes_names.items():
if "sequence" in name:
axes_names[axis_idx] = sequence_name
# We reset the value as the order in common_outputs (OrderedDict) is lost otherwise
else:
axes_names[axis_idx] = name
if self.use_past:
self.fill_with_past_key_values_(common_outputs, direction="outputs")
return common_outputs
@property
def num_layers(self) -> Tuple[int]:
try:
num_layers = super().num_layers
num_layers = (num_layers, num_layers)
except AttributeError:
if hasattr(self._config, "encoder_layers") and hasattr(self._config, "decoder_layers"):
num_layers = (self._config.encoder_layers, self._config.decoder_layers)
else:
raise AttributeError(
"could not find the number of encoder and decoder layers attributes in the model configuration,"
" override the num_layers property of the model OnnxConfig to solve this"
)
return num_layers
@property
def num_attention_heads(self) -> Tuple[int]:
try:
num_attention_heads = super().num_attention_heads
num_attention_heads = (num_attention_heads, num_attention_heads)
except AttributeError:
if hasattr(self._config, "encoder_attention_heads") and hasattr(self._config, "decoder_attention_heads"):
num_attention_heads = (self._config.encoder_attention_heads, self._config.decoder_attention_heads)
else:
raise AttributeError(
"could not find the number of attention heads for the encoder and the decoder attributes in the"
" model configuration, override the num_attention_heads property of the model OnnxConfig to solve"
" this"
)
return num_attention_heads
def generate_dummy_inputs(
self,
tokenizer: "PreTrainedTokenizerBase",
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
encoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=decoder_seq_length, is_pair=is_pair, framework=framework
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch = common_inputs["input_ids"].shape[0]
encoder_seq_length = common_inputs["input_ids"].shape[1]
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_shape = (
batch,
num_decoder_attention_heads,
# Not using the same length for past_key_values
decoder_seq_length + 3,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(min_num_layers):
# For encoder-decoder models, past_key_values contains pre-computed values for both the encoder and the
# decoder layers, hence a tuple of 4 tensors instead of 2
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str):
if direction not in ["inputs", "outputs"]:
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
name = "past_key_values" if direction == "inputs" else "present"
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
encoder_sequence = "past_encoder_sequence"
decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence"
for i in range(min_num_layers):
inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence}
inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence}
inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence}
inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence}
for i in range(min_num_layers, max_num_layers):
if remaining_side_name == "encoder":
axes_info = {0: "batch", 2: encoder_sequence}
else:
axes_info = {0: "batch", 2: decoder_sequence}
inputs_or_outputs[f"{name}.{i}.{remaining_side_name}.key"] = axes_info
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
flattened_output[f"{name}.{idx}.decoder.key"] = t[0]
flattened_output[f"{name}.{idx}.decoder.value"] = t[1]
flattened_output[f"{name}.{idx}.encoder.key"] = t[2]
flattened_output[f"{name}.{idx}.encoder.value"] = t[3]