|
from typing import List, Union |
|
|
|
from ..utils import ( |
|
add_end_docstrings, |
|
is_tf_available, |
|
is_torch_available, |
|
is_vision_available, |
|
logging, |
|
requires_backends, |
|
) |
|
from .base import PIPELINE_INIT_ARGS, Pipeline |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from ..image_utils import load_image |
|
|
|
if is_tf_available(): |
|
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@add_end_docstrings(PIPELINE_INIT_ARGS) |
|
class ImageToTextPipeline(Pipeline): |
|
""" |
|
Image To Text pipeline using a `AutoModelForVision2Seq`. This pipeline predicts a caption for a given image. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> captioner = pipeline(model="ydshieh/vit-gpt2-coco-en") |
|
>>> captioner("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") |
|
[{'generated_text': 'two birds are standing next to each other '}] |
|
``` |
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) |
|
|
|
This image to text pipeline can currently be loaded from pipeline() using the following task identifier: |
|
"image-to-text". |
|
|
|
See the list of available models on |
|
[huggingface.co/models](https://huggingface.co/models?pipeline_tag=image-to-text). |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
requires_backends(self, "vision") |
|
self.check_model_type( |
|
TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES |
|
) |
|
|
|
def _sanitize_parameters(self, max_new_tokens=None, generate_kwargs=None, prompt=None, timeout=None): |
|
forward_kwargs = {} |
|
preprocess_params = {} |
|
|
|
if prompt is not None: |
|
preprocess_params["prompt"] = prompt |
|
if timeout is not None: |
|
preprocess_params["timeout"] = timeout |
|
|
|
if generate_kwargs is not None: |
|
forward_kwargs["generate_kwargs"] = generate_kwargs |
|
if max_new_tokens is not None: |
|
if "generate_kwargs" not in forward_kwargs: |
|
forward_kwargs["generate_kwargs"] = {} |
|
if "max_new_tokens" in forward_kwargs["generate_kwargs"]: |
|
raise ValueError( |
|
"'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," |
|
" please use only one" |
|
) |
|
forward_kwargs["generate_kwargs"]["max_new_tokens"] = max_new_tokens |
|
return preprocess_params, forward_kwargs, {} |
|
|
|
def __call__(self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs): |
|
""" |
|
Assign labels to the image(s) passed as inputs. |
|
|
|
Args: |
|
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): |
|
The pipeline handles three types of images: |
|
|
|
- A string containing a HTTP(s) link pointing to an image |
|
- A string containing a local path to an image |
|
- An image loaded in PIL directly |
|
|
|
The pipeline accepts either a single image or a batch of images. |
|
|
|
max_new_tokens (`int`, *optional*): |
|
The amount of maximum tokens to generate. By default it will use `generate` default. |
|
|
|
generate_kwargs (`Dict`, *optional*): |
|
Pass it to send all of these arguments directly to `generate` allowing full control of this function. |
|
timeout (`float`, *optional*, defaults to None): |
|
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and |
|
the call may block forever. |
|
|
|
Return: |
|
A list or a list of list of `dict`: Each result comes as a dictionary with the following key: |
|
|
|
- **generated_text** (`str`) -- The generated text. |
|
""" |
|
return super().__call__(images, **kwargs) |
|
|
|
def preprocess(self, image, prompt=None, timeout=None): |
|
image = load_image(image, timeout=timeout) |
|
|
|
if prompt is not None: |
|
if not isinstance(prompt, str): |
|
raise ValueError( |
|
f"Received an invalid text input, got - {type(prompt)} - but expected a single string. " |
|
"Note also that one single text can be provided for conditional image to text generation." |
|
) |
|
|
|
model_type = self.model.config.model_type |
|
|
|
if model_type == "git": |
|
model_inputs = self.image_processor(images=image, return_tensors=self.framework) |
|
input_ids = self.tokenizer(text=prompt, add_special_tokens=False).input_ids |
|
input_ids = [self.tokenizer.cls_token_id] + input_ids |
|
input_ids = torch.tensor(input_ids).unsqueeze(0) |
|
model_inputs.update({"input_ids": input_ids}) |
|
|
|
elif model_type == "pix2struct": |
|
model_inputs = self.image_processor(images=image, header_text=prompt, return_tensors=self.framework) |
|
|
|
elif model_type != "vision-encoder-decoder": |
|
|
|
model_inputs = self.image_processor(images=image, return_tensors=self.framework) |
|
text_inputs = self.tokenizer(prompt, return_tensors=self.framework) |
|
model_inputs.update(text_inputs) |
|
|
|
else: |
|
raise ValueError(f"Model type {model_type} does not support conditional text generation") |
|
|
|
else: |
|
model_inputs = self.image_processor(images=image, return_tensors=self.framework) |
|
|
|
if self.model.config.model_type == "git" and prompt is None: |
|
model_inputs["input_ids"] = None |
|
|
|
return model_inputs |
|
|
|
def _forward(self, model_inputs, generate_kwargs=None): |
|
|
|
|
|
if ( |
|
"input_ids" in model_inputs |
|
and isinstance(model_inputs["input_ids"], list) |
|
and all(x is None for x in model_inputs["input_ids"]) |
|
): |
|
model_inputs["input_ids"] = None |
|
|
|
if generate_kwargs is None: |
|
generate_kwargs = {} |
|
|
|
|
|
|
|
|
|
inputs = model_inputs.pop(self.model.main_input_name) |
|
model_outputs = self.model.generate(inputs, **model_inputs, **generate_kwargs) |
|
return model_outputs |
|
|
|
def postprocess(self, model_outputs): |
|
records = [] |
|
for output_ids in model_outputs: |
|
record = { |
|
"generated_text": self.tokenizer.decode( |
|
output_ids, |
|
skip_special_tokens=True, |
|
) |
|
} |
|
records.append(record) |
|
return records |
|
|