|
import types |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
|
|
from ..models.bert.tokenization_bert import BasicTokenizer |
|
from ..utils import ( |
|
ExplicitEnum, |
|
add_end_docstrings, |
|
is_tf_available, |
|
is_torch_available, |
|
) |
|
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline, Dataset |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES |
|
if is_torch_available(): |
|
from ..models.auto.modeling_auto import MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES |
|
|
|
|
|
class TokenClassificationArgumentHandler(ArgumentHandler): |
|
""" |
|
Handles arguments for token classification. |
|
""" |
|
|
|
def __call__(self, inputs: Union[str, List[str]], **kwargs): |
|
if inputs is not None and isinstance(inputs, (list, tuple)) and len(inputs) > 0: |
|
inputs = list(inputs) |
|
batch_size = len(inputs) |
|
elif isinstance(inputs, str): |
|
inputs = [inputs] |
|
batch_size = 1 |
|
elif Dataset is not None and isinstance(inputs, Dataset) or isinstance(inputs, types.GeneratorType): |
|
return inputs, None |
|
else: |
|
raise ValueError("At least one input is required.") |
|
|
|
offset_mapping = kwargs.get("offset_mapping") |
|
if offset_mapping: |
|
if isinstance(offset_mapping, list) and isinstance(offset_mapping[0], tuple): |
|
offset_mapping = [offset_mapping] |
|
if len(offset_mapping) != batch_size: |
|
raise ValueError("offset_mapping should have the same batch size as the input") |
|
return inputs, offset_mapping |
|
|
|
|
|
class AggregationStrategy(ExplicitEnum): |
|
"""All the valid aggregation strategies for TokenClassificationPipeline""" |
|
|
|
NONE = "none" |
|
SIMPLE = "simple" |
|
FIRST = "first" |
|
AVERAGE = "average" |
|
MAX = "max" |
|
|
|
|
|
@add_end_docstrings( |
|
PIPELINE_INIT_ARGS, |
|
r""" |
|
ignore_labels (`List[str]`, defaults to `["O"]`): |
|
A list of labels to ignore. |
|
grouped_entities (`bool`, *optional*, defaults to `False`): |
|
DEPRECATED, use `aggregation_strategy` instead. Whether or not to group the tokens corresponding to the |
|
same entity together in the predictions or not. |
|
stride (`int`, *optional*): |
|
If stride is provided, the pipeline is applied on all the text. The text is split into chunks of size |
|
model_max_length. Works only with fast tokenizers and `aggregation_strategy` different from `NONE`. The |
|
value of this argument defines the number of overlapping tokens between chunks. In other words, the model |
|
will shift forward by `tokenizer.model_max_length - stride` tokens each step. |
|
aggregation_strategy (`str`, *optional*, defaults to `"none"`): |
|
The strategy to fuse (or not) tokens based on the model prediction. |
|
|
|
- "none" : Will simply not do any aggregation and simply return raw results from the model |
|
- "simple" : Will attempt to group entities following the default schema. (A, B-TAG), (B, I-TAG), (C, |
|
I-TAG), (D, B-TAG2) (E, B-TAG2) will end up being [{"word": ABC, "entity": "TAG"}, {"word": "D", |
|
"entity": "TAG2"}, {"word": "E", "entity": "TAG2"}] Notice that two consecutive B tags will end up as |
|
different entities. On word based languages, we might end up splitting words undesirably : Imagine |
|
Microsoft being tagged as [{"word": "Micro", "entity": "ENTERPRISE"}, {"word": "soft", "entity": |
|
"NAME"}]. Look for FIRST, MAX, AVERAGE for ways to mitigate that and disambiguate words (on languages |
|
that support that meaning, which is basically tokens separated by a space). These mitigations will |
|
only work on real words, "New york" might still be tagged with two different entities. |
|
- "first" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot |
|
end up with different tags. Words will simply use the tag of the first token of the word when there |
|
is ambiguity. |
|
- "average" : (works only on word based models) Will use the `SIMPLE` strategy except that words, |
|
cannot end up with different tags. scores will be averaged first across tokens, and then the maximum |
|
label is applied. |
|
- "max" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot |
|
end up with different tags. Word entity will simply be the token with the maximum score. |
|
""", |
|
) |
|
class TokenClassificationPipeline(ChunkPipeline): |
|
""" |
|
Named Entity Recognition pipeline using any `ModelForTokenClassification`. See the [named entity recognition |
|
examples](../task_summary#named-entity-recognition) for more information. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> token_classifier = pipeline(model="Jean-Baptiste/camembert-ner", aggregation_strategy="simple") |
|
>>> sentence = "Je m'appelle jean-baptiste et je vis à montréal" |
|
>>> tokens = token_classifier(sentence) |
|
>>> tokens |
|
[{'entity_group': 'PER', 'score': 0.9931, 'word': 'jean-baptiste', 'start': 12, 'end': 26}, {'entity_group': 'LOC', 'score': 0.998, 'word': 'montréal', 'start': 38, 'end': 47}] |
|
|
|
>>> token = tokens[0] |
|
>>> # Start and end provide an easy way to highlight words in the original text. |
|
>>> sentence[token["start"] : token["end"]] |
|
' jean-baptiste' |
|
|
|
>>> # Some models use the same idea to do part of speech. |
|
>>> syntaxer = pipeline(model="vblagoje/bert-english-uncased-finetuned-pos", aggregation_strategy="simple") |
|
>>> syntaxer("My name is Sarah and I live in London") |
|
[{'entity_group': 'PRON', 'score': 0.999, 'word': 'my', 'start': 0, 'end': 2}, {'entity_group': 'NOUN', 'score': 0.997, 'word': 'name', 'start': 3, 'end': 7}, {'entity_group': 'AUX', 'score': 0.994, 'word': 'is', 'start': 8, 'end': 10}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'sarah', 'start': 11, 'end': 16}, {'entity_group': 'CCONJ', 'score': 0.999, 'word': 'and', 'start': 17, 'end': 20}, {'entity_group': 'PRON', 'score': 0.999, 'word': 'i', 'start': 21, 'end': 22}, {'entity_group': 'VERB', 'score': 0.998, 'word': 'live', 'start': 23, 'end': 27}, {'entity_group': 'ADP', 'score': 0.999, 'word': 'in', 'start': 28, 'end': 30}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'london', 'start': 31, 'end': 37}] |
|
``` |
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) |
|
|
|
This token recognition pipeline can currently be loaded from [`pipeline`] using the following task identifier: |
|
`"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous). |
|
|
|
The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the |
|
up-to-date list of available models on |
|
[huggingface.co/models](https://huggingface.co/models?filter=token-classification). |
|
""" |
|
|
|
default_input_names = "sequences" |
|
|
|
def __init__(self, args_parser=TokenClassificationArgumentHandler(), *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.check_model_type( |
|
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES |
|
if self.framework == "tf" |
|
else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES |
|
) |
|
|
|
self._basic_tokenizer = BasicTokenizer(do_lower_case=False) |
|
self._args_parser = args_parser |
|
|
|
def _sanitize_parameters( |
|
self, |
|
ignore_labels=None, |
|
grouped_entities: Optional[bool] = None, |
|
ignore_subwords: Optional[bool] = None, |
|
aggregation_strategy: Optional[AggregationStrategy] = None, |
|
offset_mapping: Optional[List[Tuple[int, int]]] = None, |
|
stride: Optional[int] = None, |
|
): |
|
preprocess_params = {} |
|
if offset_mapping is not None: |
|
preprocess_params["offset_mapping"] = offset_mapping |
|
|
|
postprocess_params = {} |
|
if grouped_entities is not None or ignore_subwords is not None: |
|
if grouped_entities and ignore_subwords: |
|
aggregation_strategy = AggregationStrategy.FIRST |
|
elif grouped_entities and not ignore_subwords: |
|
aggregation_strategy = AggregationStrategy.SIMPLE |
|
else: |
|
aggregation_strategy = AggregationStrategy.NONE |
|
|
|
if grouped_entities is not None: |
|
warnings.warn( |
|
"`grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to" |
|
f' `aggregation_strategy="{aggregation_strategy}"` instead.' |
|
) |
|
if ignore_subwords is not None: |
|
warnings.warn( |
|
"`ignore_subwords` is deprecated and will be removed in version v5.0.0, defaulted to" |
|
f' `aggregation_strategy="{aggregation_strategy}"` instead.' |
|
) |
|
|
|
if aggregation_strategy is not None: |
|
if isinstance(aggregation_strategy, str): |
|
aggregation_strategy = AggregationStrategy[aggregation_strategy.upper()] |
|
if ( |
|
aggregation_strategy |
|
in {AggregationStrategy.FIRST, AggregationStrategy.MAX, AggregationStrategy.AVERAGE} |
|
and not self.tokenizer.is_fast |
|
): |
|
raise ValueError( |
|
"Slow tokenizers cannot handle subwords. Please set the `aggregation_strategy` option" |
|
' to `"simple"` or use a fast tokenizer.' |
|
) |
|
postprocess_params["aggregation_strategy"] = aggregation_strategy |
|
if ignore_labels is not None: |
|
postprocess_params["ignore_labels"] = ignore_labels |
|
if stride is not None: |
|
if stride >= self.tokenizer.model_max_length: |
|
raise ValueError( |
|
"`stride` must be less than `tokenizer.model_max_length` (or even lower if the tokenizer adds special tokens)" |
|
) |
|
if aggregation_strategy == AggregationStrategy.NONE: |
|
raise ValueError( |
|
"`stride` was provided to process all the text but `aggregation_strategy=" |
|
f'"{aggregation_strategy}"`, please select another one instead.' |
|
) |
|
else: |
|
if self.tokenizer.is_fast: |
|
tokenizer_params = { |
|
"return_overflowing_tokens": True, |
|
"padding": True, |
|
"stride": stride, |
|
} |
|
preprocess_params["tokenizer_params"] = tokenizer_params |
|
else: |
|
raise ValueError( |
|
"`stride` was provided to process all the text but you're using a slow tokenizer." |
|
" Please use a fast tokenizer." |
|
) |
|
return preprocess_params, {}, postprocess_params |
|
|
|
def __call__(self, inputs: Union[str, List[str]], **kwargs): |
|
""" |
|
Classify each token of the text(s) given as inputs. |
|
|
|
Args: |
|
inputs (`str` or `List[str]`): |
|
One or several texts (or one list of texts) for token classification. |
|
|
|
Return: |
|
A list or a list of list of `dict`: Each result comes as a list of dictionaries (one for each token in the |
|
corresponding input, or each entity if this pipeline was instantiated with an aggregation_strategy) with |
|
the following keys: |
|
|
|
- **word** (`str`) -- The token/word classified. This is obtained by decoding the selected tokens. If you |
|
want to have the exact string in the original sentence, use `start` and `end`. |
|
- **score** (`float`) -- The corresponding probability for `entity`. |
|
- **entity** (`str`) -- The entity predicted for that token/word (it is named *entity_group* when |
|
*aggregation_strategy* is not `"none"`. |
|
- **index** (`int`, only present when `aggregation_strategy="none"`) -- The index of the corresponding |
|
token in the sentence. |
|
- **start** (`int`, *optional*) -- The index of the start of the corresponding entity in the sentence. Only |
|
exists if the offsets are available within the tokenizer |
|
- **end** (`int`, *optional*) -- The index of the end of the corresponding entity in the sentence. Only |
|
exists if the offsets are available within the tokenizer |
|
""" |
|
|
|
_inputs, offset_mapping = self._args_parser(inputs, **kwargs) |
|
if offset_mapping: |
|
kwargs["offset_mapping"] = offset_mapping |
|
|
|
return super().__call__(inputs, **kwargs) |
|
|
|
def preprocess(self, sentence, offset_mapping=None, **preprocess_params): |
|
tokenizer_params = preprocess_params.pop("tokenizer_params", {}) |
|
truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False |
|
inputs = self.tokenizer( |
|
sentence, |
|
return_tensors=self.framework, |
|
truncation=truncation, |
|
return_special_tokens_mask=True, |
|
return_offsets_mapping=self.tokenizer.is_fast, |
|
**tokenizer_params, |
|
) |
|
inputs.pop("overflow_to_sample_mapping", None) |
|
num_chunks = len(inputs["input_ids"]) |
|
|
|
for i in range(num_chunks): |
|
if self.framework == "tf": |
|
model_inputs = {k: tf.expand_dims(v[i], 0) for k, v in inputs.items()} |
|
else: |
|
model_inputs = {k: v[i].unsqueeze(0) for k, v in inputs.items()} |
|
if offset_mapping is not None: |
|
model_inputs["offset_mapping"] = offset_mapping |
|
model_inputs["sentence"] = sentence if i == 0 else None |
|
model_inputs["is_last"] = i == num_chunks - 1 |
|
|
|
yield model_inputs |
|
|
|
def _forward(self, model_inputs): |
|
|
|
special_tokens_mask = model_inputs.pop("special_tokens_mask") |
|
offset_mapping = model_inputs.pop("offset_mapping", None) |
|
sentence = model_inputs.pop("sentence") |
|
is_last = model_inputs.pop("is_last") |
|
if self.framework == "tf": |
|
logits = self.model(**model_inputs)[0] |
|
else: |
|
output = self.model(**model_inputs) |
|
logits = output["logits"] if isinstance(output, dict) else output[0] |
|
|
|
return { |
|
"logits": logits, |
|
"special_tokens_mask": special_tokens_mask, |
|
"offset_mapping": offset_mapping, |
|
"sentence": sentence, |
|
"is_last": is_last, |
|
**model_inputs, |
|
} |
|
|
|
def postprocess(self, all_outputs, aggregation_strategy=AggregationStrategy.NONE, ignore_labels=None): |
|
if ignore_labels is None: |
|
ignore_labels = ["O"] |
|
all_entities = [] |
|
for model_outputs in all_outputs: |
|
logits = model_outputs["logits"][0].numpy() |
|
sentence = all_outputs[0]["sentence"] |
|
input_ids = model_outputs["input_ids"][0] |
|
offset_mapping = ( |
|
model_outputs["offset_mapping"][0] if model_outputs["offset_mapping"] is not None else None |
|
) |
|
special_tokens_mask = model_outputs["special_tokens_mask"][0].numpy() |
|
|
|
maxes = np.max(logits, axis=-1, keepdims=True) |
|
shifted_exp = np.exp(logits - maxes) |
|
scores = shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) |
|
|
|
if self.framework == "tf": |
|
input_ids = input_ids.numpy() |
|
offset_mapping = offset_mapping.numpy() if offset_mapping is not None else None |
|
|
|
pre_entities = self.gather_pre_entities( |
|
sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy |
|
) |
|
grouped_entities = self.aggregate(pre_entities, aggregation_strategy) |
|
|
|
entities = [ |
|
entity |
|
for entity in grouped_entities |
|
if entity.get("entity", None) not in ignore_labels |
|
and entity.get("entity_group", None) not in ignore_labels |
|
] |
|
all_entities.extend(entities) |
|
num_chunks = len(all_outputs) |
|
if num_chunks > 1: |
|
all_entities = self.aggregate_overlapping_entities(all_entities) |
|
return all_entities |
|
|
|
def aggregate_overlapping_entities(self, entities): |
|
if len(entities) == 0: |
|
return entities |
|
entities = sorted(entities, key=lambda x: x["start"]) |
|
aggregated_entities = [] |
|
previous_entity = entities[0] |
|
for entity in entities: |
|
if previous_entity["start"] <= entity["start"] < previous_entity["end"]: |
|
current_length = entity["end"] - entity["start"] |
|
previous_length = previous_entity["end"] - previous_entity["start"] |
|
if current_length > previous_length: |
|
previous_entity = entity |
|
elif current_length == previous_length and entity["score"] > previous_entity["score"]: |
|
previous_entity = entity |
|
else: |
|
aggregated_entities.append(previous_entity) |
|
previous_entity = entity |
|
aggregated_entities.append(previous_entity) |
|
return aggregated_entities |
|
|
|
def gather_pre_entities( |
|
self, |
|
sentence: str, |
|
input_ids: np.ndarray, |
|
scores: np.ndarray, |
|
offset_mapping: Optional[List[Tuple[int, int]]], |
|
special_tokens_mask: np.ndarray, |
|
aggregation_strategy: AggregationStrategy, |
|
) -> List[dict]: |
|
"""Fuse various numpy arrays into dicts with all the information needed for aggregation""" |
|
pre_entities = [] |
|
for idx, token_scores in enumerate(scores): |
|
|
|
if special_tokens_mask[idx]: |
|
continue |
|
|
|
word = self.tokenizer.convert_ids_to_tokens(int(input_ids[idx])) |
|
if offset_mapping is not None: |
|
start_ind, end_ind = offset_mapping[idx] |
|
if not isinstance(start_ind, int): |
|
if self.framework == "pt": |
|
start_ind = start_ind.item() |
|
end_ind = end_ind.item() |
|
word_ref = sentence[start_ind:end_ind] |
|
if getattr(self.tokenizer, "_tokenizer", None) and getattr( |
|
self.tokenizer._tokenizer.model, "continuing_subword_prefix", None |
|
): |
|
|
|
|
|
is_subword = len(word) != len(word_ref) |
|
else: |
|
|
|
if aggregation_strategy in { |
|
AggregationStrategy.FIRST, |
|
AggregationStrategy.AVERAGE, |
|
AggregationStrategy.MAX, |
|
}: |
|
warnings.warn( |
|
"Tokenizer does not support real words, using fallback heuristic", |
|
UserWarning, |
|
) |
|
is_subword = start_ind > 0 and " " not in sentence[start_ind - 1 : start_ind + 1] |
|
|
|
if int(input_ids[idx]) == self.tokenizer.unk_token_id: |
|
word = word_ref |
|
is_subword = False |
|
else: |
|
start_ind = None |
|
end_ind = None |
|
is_subword = False |
|
|
|
pre_entity = { |
|
"word": word, |
|
"scores": token_scores, |
|
"start": start_ind, |
|
"end": end_ind, |
|
"index": idx, |
|
"is_subword": is_subword, |
|
} |
|
pre_entities.append(pre_entity) |
|
return pre_entities |
|
|
|
def aggregate(self, pre_entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]: |
|
if aggregation_strategy in {AggregationStrategy.NONE, AggregationStrategy.SIMPLE}: |
|
entities = [] |
|
for pre_entity in pre_entities: |
|
entity_idx = pre_entity["scores"].argmax() |
|
score = pre_entity["scores"][entity_idx] |
|
entity = { |
|
"entity": self.model.config.id2label[entity_idx], |
|
"score": score, |
|
"index": pre_entity["index"], |
|
"word": pre_entity["word"], |
|
"start": pre_entity["start"], |
|
"end": pre_entity["end"], |
|
} |
|
entities.append(entity) |
|
else: |
|
entities = self.aggregate_words(pre_entities, aggregation_strategy) |
|
|
|
if aggregation_strategy == AggregationStrategy.NONE: |
|
return entities |
|
return self.group_entities(entities) |
|
|
|
def aggregate_word(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> dict: |
|
word = self.tokenizer.convert_tokens_to_string([entity["word"] for entity in entities]) |
|
if aggregation_strategy == AggregationStrategy.FIRST: |
|
scores = entities[0]["scores"] |
|
idx = scores.argmax() |
|
score = scores[idx] |
|
entity = self.model.config.id2label[idx] |
|
elif aggregation_strategy == AggregationStrategy.MAX: |
|
max_entity = max(entities, key=lambda entity: entity["scores"].max()) |
|
scores = max_entity["scores"] |
|
idx = scores.argmax() |
|
score = scores[idx] |
|
entity = self.model.config.id2label[idx] |
|
elif aggregation_strategy == AggregationStrategy.AVERAGE: |
|
scores = np.stack([entity["scores"] for entity in entities]) |
|
average_scores = np.nanmean(scores, axis=0) |
|
entity_idx = average_scores.argmax() |
|
entity = self.model.config.id2label[entity_idx] |
|
score = average_scores[entity_idx] |
|
else: |
|
raise ValueError("Invalid aggregation_strategy") |
|
new_entity = { |
|
"entity": entity, |
|
"score": score, |
|
"word": word, |
|
"start": entities[0]["start"], |
|
"end": entities[-1]["end"], |
|
} |
|
return new_entity |
|
|
|
def aggregate_words(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]: |
|
""" |
|
Override tokens from a given word that disagree to force agreement on word boundaries. |
|
|
|
Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft| |
|
company| B-ENT I-ENT |
|
""" |
|
if aggregation_strategy in { |
|
AggregationStrategy.NONE, |
|
AggregationStrategy.SIMPLE, |
|
}: |
|
raise ValueError("NONE and SIMPLE strategies are invalid for word aggregation") |
|
|
|
word_entities = [] |
|
word_group = None |
|
for entity in entities: |
|
if word_group is None: |
|
word_group = [entity] |
|
elif entity["is_subword"]: |
|
word_group.append(entity) |
|
else: |
|
word_entities.append(self.aggregate_word(word_group, aggregation_strategy)) |
|
word_group = [entity] |
|
|
|
if word_group is not None: |
|
word_entities.append(self.aggregate_word(word_group, aggregation_strategy)) |
|
return word_entities |
|
|
|
def group_sub_entities(self, entities: List[dict]) -> dict: |
|
""" |
|
Group together the adjacent tokens with the same entity predicted. |
|
|
|
Args: |
|
entities (`dict`): The entities predicted by the pipeline. |
|
""" |
|
|
|
entity = entities[0]["entity"].split("-")[-1] |
|
scores = np.nanmean([entity["score"] for entity in entities]) |
|
tokens = [entity["word"] for entity in entities] |
|
|
|
entity_group = { |
|
"entity_group": entity, |
|
"score": np.mean(scores), |
|
"word": self.tokenizer.convert_tokens_to_string(tokens), |
|
"start": entities[0]["start"], |
|
"end": entities[-1]["end"], |
|
} |
|
return entity_group |
|
|
|
def get_tag(self, entity_name: str) -> Tuple[str, str]: |
|
if entity_name.startswith("B-"): |
|
bi = "B" |
|
tag = entity_name[2:] |
|
elif entity_name.startswith("I-"): |
|
bi = "I" |
|
tag = entity_name[2:] |
|
else: |
|
|
|
|
|
bi = "I" |
|
tag = entity_name |
|
return bi, tag |
|
|
|
def group_entities(self, entities: List[dict]) -> List[dict]: |
|
""" |
|
Find and group together the adjacent tokens with the same entity predicted. |
|
|
|
Args: |
|
entities (`dict`): The entities predicted by the pipeline. |
|
""" |
|
|
|
entity_groups = [] |
|
entity_group_disagg = [] |
|
|
|
for entity in entities: |
|
if not entity_group_disagg: |
|
entity_group_disagg.append(entity) |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
bi, tag = self.get_tag(entity["entity"]) |
|
last_bi, last_tag = self.get_tag(entity_group_disagg[-1]["entity"]) |
|
|
|
if tag == last_tag and bi != "B": |
|
|
|
entity_group_disagg.append(entity) |
|
else: |
|
|
|
|
|
entity_groups.append(self.group_sub_entities(entity_group_disagg)) |
|
entity_group_disagg = [entity] |
|
if entity_group_disagg: |
|
|
|
entity_groups.append(self.group_sub_entities(entity_group_disagg)) |
|
|
|
return entity_groups |
|
|
|
|
|
NerPipeline = TokenClassificationPipeline |
|
|