|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Feature extraction saving/loading class for common feature extractors. |
|
""" |
|
|
|
import copy |
|
import json |
|
import os |
|
import warnings |
|
from collections import UserDict |
|
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
|
|
from .dynamic_module_utils import custom_object_save |
|
from .utils import ( |
|
FEATURE_EXTRACTOR_NAME, |
|
PushToHubMixin, |
|
TensorType, |
|
add_model_info_to_auto_map, |
|
cached_file, |
|
copy_func, |
|
download_url, |
|
is_flax_available, |
|
is_jax_tensor, |
|
is_numpy_array, |
|
is_offline_mode, |
|
is_remote_url, |
|
is_tf_available, |
|
is_torch_available, |
|
is_torch_device, |
|
is_torch_dtype, |
|
logging, |
|
requires_backends, |
|
) |
|
|
|
|
|
if TYPE_CHECKING: |
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
PreTrainedFeatureExtractor = Union["SequenceFeatureExtractor"] |
|
|
|
|
|
class BatchFeature(UserDict): |
|
r""" |
|
Holds the output of the [`~SequenceFeatureExtractor.pad`] and feature extractor specific `__call__` methods. |
|
|
|
This class is derived from a python dictionary and can be used as a dictionary. |
|
|
|
Args: |
|
data (`dict`, *optional*): |
|
Dictionary of lists/arrays/tensors returned by the __call__/pad methods ('input_values', 'attention_mask', |
|
etc.). |
|
tensor_type (`Union[None, str, TensorType]`, *optional*): |
|
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at |
|
initialization. |
|
""" |
|
|
|
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None): |
|
super().__init__(data) |
|
self.convert_to_tensors(tensor_type=tensor_type) |
|
|
|
def __getitem__(self, item: str) -> Union[Any]: |
|
""" |
|
If the key is a string, returns the value of the dict associated to `key` ('input_values', 'attention_mask', |
|
etc.). |
|
""" |
|
if isinstance(item, str): |
|
return self.data[item] |
|
else: |
|
raise KeyError("Indexing with integers is not available when using Python based feature extractors") |
|
|
|
def __getattr__(self, item: str): |
|
try: |
|
return self.data[item] |
|
except KeyError: |
|
raise AttributeError |
|
|
|
def __getstate__(self): |
|
return {"data": self.data} |
|
|
|
def __setstate__(self, state): |
|
if "data" in state: |
|
self.data = state["data"] |
|
|
|
|
|
def keys(self): |
|
return self.data.keys() |
|
|
|
|
|
def values(self): |
|
return self.data.values() |
|
|
|
|
|
def items(self): |
|
return self.data.items() |
|
|
|
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None): |
|
""" |
|
Convert the inner content to tensors. |
|
|
|
Args: |
|
tensor_type (`str` or [`~utils.TensorType`], *optional*): |
|
The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If |
|
`None`, no modification is done. |
|
""" |
|
if tensor_type is None: |
|
return self |
|
|
|
|
|
if not isinstance(tensor_type, TensorType): |
|
tensor_type = TensorType(tensor_type) |
|
|
|
|
|
if tensor_type == TensorType.TENSORFLOW: |
|
if not is_tf_available(): |
|
raise ImportError( |
|
"Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." |
|
) |
|
import tensorflow as tf |
|
|
|
as_tensor = tf.constant |
|
is_tensor = tf.is_tensor |
|
elif tensor_type == TensorType.PYTORCH: |
|
if not is_torch_available(): |
|
raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") |
|
import torch |
|
|
|
def as_tensor(value): |
|
if isinstance(value, (list, tuple)) and len(value) > 0 and isinstance(value[0], np.ndarray): |
|
value = np.array(value) |
|
return torch.tensor(value) |
|
|
|
is_tensor = torch.is_tensor |
|
elif tensor_type == TensorType.JAX: |
|
if not is_flax_available(): |
|
raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") |
|
import jax.numpy as jnp |
|
|
|
as_tensor = jnp.array |
|
is_tensor = is_jax_tensor |
|
else: |
|
|
|
def as_tensor(value, dtype=None): |
|
if isinstance(value, (list, tuple)) and isinstance(value[0], (list, tuple, np.ndarray)): |
|
value_lens = [len(val) for val in value] |
|
if len(set(value_lens)) > 1 and dtype is None: |
|
|
|
value = as_tensor([np.asarray(val) for val in value], dtype=object) |
|
return np.asarray(value, dtype=dtype) |
|
|
|
is_tensor = is_numpy_array |
|
|
|
|
|
for key, value in self.items(): |
|
try: |
|
if not is_tensor(value): |
|
tensor = as_tensor(value) |
|
|
|
self[key] = tensor |
|
except: |
|
if key == "overflowing_values": |
|
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ") |
|
raise ValueError( |
|
"Unable to create tensor, you should probably activate padding " |
|
"with 'padding=True' to have batched tensors with the same length." |
|
) |
|
|
|
return self |
|
|
|
def to(self, *args, **kwargs) -> "BatchFeature": |
|
""" |
|
Send all values to device by calling `v.to(*args, **kwargs)` (PyTorch only). This should support casting in |
|
different `dtypes` and sending the `BatchFeature` to a different `device`. |
|
|
|
Args: |
|
args (`Tuple`): |
|
Will be passed to the `to(...)` function of the tensors. |
|
kwargs (`Dict`, *optional*): |
|
Will be passed to the `to(...)` function of the tensors. |
|
|
|
Returns: |
|
[`BatchFeature`]: The same instance after modification. |
|
""" |
|
requires_backends(self, ["torch"]) |
|
import torch |
|
|
|
new_data = {} |
|
device = kwargs.get("device") |
|
|
|
if device is None and len(args) > 0: |
|
|
|
arg = args[0] |
|
if is_torch_dtype(arg): |
|
|
|
pass |
|
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int): |
|
device = arg |
|
else: |
|
|
|
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.") |
|
|
|
for k, v in self.items(): |
|
|
|
if torch.is_floating_point(v): |
|
|
|
new_data[k] = v.to(*args, **kwargs) |
|
elif device is not None: |
|
new_data[k] = v.to(device=device) |
|
else: |
|
new_data[k] = v |
|
self.data = new_data |
|
return self |
|
|
|
|
|
class FeatureExtractionMixin(PushToHubMixin): |
|
""" |
|
This is a feature extraction mixin used to provide saving/loading functionality for sequential and image feature |
|
extractors. |
|
""" |
|
|
|
_auto_class = None |
|
|
|
def __init__(self, **kwargs): |
|
"""Set elements of `kwargs` as attributes.""" |
|
|
|
self._processor_class = kwargs.pop("processor_class", None) |
|
|
|
for key, value in kwargs.items(): |
|
try: |
|
setattr(self, key, value) |
|
except AttributeError as err: |
|
logger.error(f"Can't set {key} with value {value} for {self}") |
|
raise err |
|
|
|
def _set_processor_class(self, processor_class: str): |
|
"""Sets processor class as an attribute.""" |
|
self._processor_class = processor_class |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
**kwargs, |
|
): |
|
r""" |
|
Instantiate a type of [`~feature_extraction_utils.FeatureExtractionMixin`] from a feature extractor, *e.g.* a |
|
derived class of [`SequenceFeatureExtractor`]. |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on |
|
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or |
|
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- a path to a *directory* containing a feature extractor file saved using the |
|
[`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] method, e.g., |
|
`./my_model_directory/`. |
|
- a path or url to a saved feature extractor JSON *file*, e.g., |
|
`./my_model_directory/preprocessor_config.json`. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model feature extractor should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force to (re-)download the feature extractor files and override the cached versions |
|
if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file |
|
exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
token (`str` or `bool`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use |
|
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
|
|
|
|
<Tip> |
|
|
|
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". |
|
|
|
</Tip> |
|
|
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`): |
|
If `False`, then this function returns just the final feature extractor object. If `True`, then this |
|
functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary |
|
consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of |
|
`kwargs` which has not been used to update `feature_extractor` and is otherwise ignored. |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
The values in kwargs of any keys which are feature extractor attributes will be used to override the |
|
loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is |
|
controlled by the `return_unused_kwargs` keyword parameter. |
|
|
|
Returns: |
|
A feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`]. |
|
|
|
Examples: |
|
|
|
```python |
|
# We can't instantiate directly the base class *FeatureExtractionMixin* nor *SequenceFeatureExtractor* so let's show the examples on a |
|
# derived class: *Wav2Vec2FeatureExtractor* |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( |
|
"facebook/wav2vec2-base-960h" |
|
) # Download feature_extraction_config from huggingface.co and cache. |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( |
|
"./test/saved_model/" |
|
) # E.g. feature_extractor (or model) was saved using *save_pretrained('./test/saved_model/')* |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("./test/saved_model/preprocessor_config.json") |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( |
|
"facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False |
|
) |
|
assert feature_extractor.return_attention_mask is False |
|
feature_extractor, unused_kwargs = Wav2Vec2FeatureExtractor.from_pretrained( |
|
"facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False, return_unused_kwargs=True |
|
) |
|
assert feature_extractor.return_attention_mask is False |
|
assert unused_kwargs == {"foo": False} |
|
```""" |
|
kwargs["cache_dir"] = cache_dir |
|
kwargs["force_download"] = force_download |
|
kwargs["local_files_only"] = local_files_only |
|
kwargs["revision"] = revision |
|
|
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
token = use_auth_token |
|
|
|
if token is not None: |
|
kwargs["token"] = token |
|
|
|
feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
return cls.from_dict(feature_extractor_dict, **kwargs) |
|
|
|
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): |
|
""" |
|
Save a feature_extractor object to the directory `save_directory`, so that it can be re-loaded using the |
|
[`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] class method. |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory where the feature extractor JSON file will be saved (will be created if it does not exist). |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the |
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your |
|
namespace). |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. |
|
""" |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
|
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if kwargs.get("token", None) is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
kwargs["token"] = use_auth_token |
|
|
|
if os.path.isfile(save_directory): |
|
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
if push_to_hub: |
|
commit_message = kwargs.pop("commit_message", None) |
|
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) |
|
repo_id = self._create_repo(repo_id, **kwargs) |
|
files_timestamps = self._get_files_timestamps(save_directory) |
|
|
|
|
|
|
|
if self._auto_class is not None: |
|
custom_object_save(self, save_directory, config=self) |
|
|
|
|
|
output_feature_extractor_file = os.path.join(save_directory, FEATURE_EXTRACTOR_NAME) |
|
|
|
self.to_json_file(output_feature_extractor_file) |
|
logger.info(f"Feature extractor saved in {output_feature_extractor_file}") |
|
|
|
if push_to_hub: |
|
self._upload_modified_files( |
|
save_directory, |
|
repo_id, |
|
files_timestamps, |
|
commit_message=commit_message, |
|
token=kwargs.get("token"), |
|
) |
|
|
|
return [output_feature_extractor_file] |
|
|
|
@classmethod |
|
def get_feature_extractor_dict( |
|
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs |
|
) -> Tuple[Dict[str, Any], Dict[str, Any]]: |
|
""" |
|
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a |
|
feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`] using `from_dict`. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. |
|
|
|
Returns: |
|
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor object. |
|
""" |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
token = kwargs.pop("token", None) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
local_files_only = kwargs.pop("local_files_only", False) |
|
revision = kwargs.pop("revision", None) |
|
|
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
token = use_auth_token |
|
|
|
from_pipeline = kwargs.pop("_from_pipeline", None) |
|
from_auto_class = kwargs.pop("_from_auto", False) |
|
|
|
user_agent = {"file_type": "feature extractor", "from_auto_class": from_auto_class} |
|
if from_pipeline is not None: |
|
user_agent["using_pipeline"] = from_pipeline |
|
|
|
if is_offline_mode() and not local_files_only: |
|
logger.info("Offline mode: forcing local_files_only=True") |
|
local_files_only = True |
|
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
is_local = os.path.isdir(pretrained_model_name_or_path) |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
feature_extractor_file = os.path.join(pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME) |
|
if os.path.isfile(pretrained_model_name_or_path): |
|
resolved_feature_extractor_file = pretrained_model_name_or_path |
|
is_local = True |
|
elif is_remote_url(pretrained_model_name_or_path): |
|
feature_extractor_file = pretrained_model_name_or_path |
|
resolved_feature_extractor_file = download_url(pretrained_model_name_or_path) |
|
else: |
|
feature_extractor_file = FEATURE_EXTRACTOR_NAME |
|
try: |
|
|
|
resolved_feature_extractor_file = cached_file( |
|
pretrained_model_name_or_path, |
|
feature_extractor_file, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
user_agent=user_agent, |
|
revision=revision, |
|
) |
|
except EnvironmentError: |
|
|
|
|
|
raise |
|
except Exception: |
|
|
|
raise EnvironmentError( |
|
f"Can't load feature extractor for '{pretrained_model_name_or_path}'. If you were trying to load" |
|
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the" |
|
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" |
|
f" directory containing a {FEATURE_EXTRACTOR_NAME} file" |
|
) |
|
|
|
try: |
|
|
|
with open(resolved_feature_extractor_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
feature_extractor_dict = json.loads(text) |
|
|
|
except json.JSONDecodeError: |
|
raise EnvironmentError( |
|
f"It looks like the config file at '{resolved_feature_extractor_file}' is not a valid JSON file." |
|
) |
|
|
|
if is_local: |
|
logger.info(f"loading configuration file {resolved_feature_extractor_file}") |
|
else: |
|
logger.info( |
|
f"loading configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}" |
|
) |
|
|
|
if "auto_map" in feature_extractor_dict and not is_local: |
|
feature_extractor_dict["auto_map"] = add_model_info_to_auto_map( |
|
feature_extractor_dict["auto_map"], pretrained_model_name_or_path |
|
) |
|
|
|
return feature_extractor_dict, kwargs |
|
|
|
@classmethod |
|
def from_dict(cls, feature_extractor_dict: Dict[str, Any], **kwargs) -> PreTrainedFeatureExtractor: |
|
""" |
|
Instantiates a type of [`~feature_extraction_utils.FeatureExtractionMixin`] from a Python dictionary of |
|
parameters. |
|
|
|
Args: |
|
feature_extractor_dict (`Dict[str, Any]`): |
|
Dictionary that will be used to instantiate the feature extractor object. Such a dictionary can be |
|
retrieved from a pretrained checkpoint by leveraging the |
|
[`~feature_extraction_utils.FeatureExtractionMixin.to_dict`] method. |
|
kwargs (`Dict[str, Any]`): |
|
Additional parameters from which to initialize the feature extractor object. |
|
|
|
Returns: |
|
[`~feature_extraction_utils.FeatureExtractionMixin`]: The feature extractor object instantiated from those |
|
parameters. |
|
""" |
|
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) |
|
|
|
feature_extractor = cls(**feature_extractor_dict) |
|
|
|
|
|
to_remove = [] |
|
for key, value in kwargs.items(): |
|
if hasattr(feature_extractor, key): |
|
setattr(feature_extractor, key, value) |
|
to_remove.append(key) |
|
for key in to_remove: |
|
kwargs.pop(key, None) |
|
|
|
logger.info(f"Feature extractor {feature_extractor}") |
|
if return_unused_kwargs: |
|
return feature_extractor, kwargs |
|
else: |
|
return feature_extractor |
|
|
|
def to_dict(self) -> Dict[str, Any]: |
|
""" |
|
Serializes this instance to a Python dictionary. |
|
|
|
Returns: |
|
`Dict[str, Any]`: Dictionary of all the attributes that make up this feature extractor instance. |
|
""" |
|
output = copy.deepcopy(self.__dict__) |
|
output["feature_extractor_type"] = self.__class__.__name__ |
|
|
|
return output |
|
|
|
@classmethod |
|
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> PreTrainedFeatureExtractor: |
|
""" |
|
Instantiates a feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`] from the path to |
|
a JSON file of parameters. |
|
|
|
Args: |
|
json_file (`str` or `os.PathLike`): |
|
Path to the JSON file containing the parameters. |
|
|
|
Returns: |
|
A feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`]: The feature_extractor |
|
object instantiated from that JSON file. |
|
""" |
|
with open(json_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
feature_extractor_dict = json.loads(text) |
|
return cls(**feature_extractor_dict) |
|
|
|
def to_json_string(self) -> str: |
|
""" |
|
Serializes this instance to a JSON string. |
|
|
|
Returns: |
|
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format. |
|
""" |
|
dictionary = self.to_dict() |
|
|
|
for key, value in dictionary.items(): |
|
if isinstance(value, np.ndarray): |
|
dictionary[key] = value.tolist() |
|
|
|
|
|
|
|
_processor_class = dictionary.pop("_processor_class", None) |
|
if _processor_class is not None: |
|
dictionary["processor_class"] = _processor_class |
|
|
|
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n" |
|
|
|
def to_json_file(self, json_file_path: Union[str, os.PathLike]): |
|
""" |
|
Save this instance to a JSON file. |
|
|
|
Args: |
|
json_file_path (`str` or `os.PathLike`): |
|
Path to the JSON file in which this feature_extractor instance's parameters will be saved. |
|
""" |
|
with open(json_file_path, "w", encoding="utf-8") as writer: |
|
writer.write(self.to_json_string()) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__} {self.to_json_string()}" |
|
|
|
@classmethod |
|
def register_for_auto_class(cls, auto_class="AutoFeatureExtractor"): |
|
""" |
|
Register this class with a given auto class. This should only be used for custom feature extractors as the ones |
|
in the library are already mapped with `AutoFeatureExtractor`. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is experimental and may have some slight breaking changes in the next releases. |
|
|
|
</Tip> |
|
|
|
Args: |
|
auto_class (`str` or `type`, *optional*, defaults to `"AutoFeatureExtractor"`): |
|
The auto class to register this new feature extractor with. |
|
""" |
|
if not isinstance(auto_class, str): |
|
auto_class = auto_class.__name__ |
|
|
|
import transformers.models.auto as auto_module |
|
|
|
if not hasattr(auto_module, auto_class): |
|
raise ValueError(f"{auto_class} is not a valid auto class.") |
|
|
|
cls._auto_class = auto_class |
|
|
|
|
|
FeatureExtractionMixin.push_to_hub = copy_func(FeatureExtractionMixin.push_to_hub) |
|
if FeatureExtractionMixin.push_to_hub.__doc__ is not None: |
|
FeatureExtractionMixin.push_to_hub.__doc__ = FeatureExtractionMixin.push_to_hub.__doc__.format( |
|
object="feature extractor", object_class="AutoFeatureExtractor", object_files="feature extractor file" |
|
) |
|
|