|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import json |
|
import os |
|
import warnings |
|
from io import BytesIO |
|
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import requests |
|
|
|
from .dynamic_module_utils import custom_object_save |
|
from .feature_extraction_utils import BatchFeature as BaseBatchFeature |
|
from .image_transforms import center_crop, normalize, rescale |
|
from .image_utils import ChannelDimension |
|
from .utils import ( |
|
IMAGE_PROCESSOR_NAME, |
|
PushToHubMixin, |
|
add_model_info_to_auto_map, |
|
cached_file, |
|
copy_func, |
|
download_url, |
|
is_offline_mode, |
|
is_remote_url, |
|
is_vision_available, |
|
logging, |
|
) |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
class BatchFeature(BaseBatchFeature): |
|
r""" |
|
Holds the output of the image processor specific `__call__` methods. |
|
|
|
This class is derived from a python dictionary and can be used as a dictionary. |
|
|
|
Args: |
|
data (`dict`): |
|
Dictionary of lists/arrays/tensors returned by the __call__ method ('pixel_values', etc.). |
|
tensor_type (`Union[None, str, TensorType]`, *optional*): |
|
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at |
|
initialization. |
|
""" |
|
|
|
|
|
|
|
class ImageProcessingMixin(PushToHubMixin): |
|
""" |
|
This is an image processor mixin used to provide saving/loading functionality for sequential and image feature |
|
extractors. |
|
""" |
|
|
|
_auto_class = None |
|
|
|
def __init__(self, **kwargs): |
|
"""Set elements of `kwargs` as attributes.""" |
|
|
|
self._processor_class = kwargs.pop("processor_class", None) |
|
|
|
for key, value in kwargs.items(): |
|
try: |
|
setattr(self, key, value) |
|
except AttributeError as err: |
|
logger.error(f"Can't set {key} with value {value} for {self}") |
|
raise err |
|
|
|
def _set_processor_class(self, processor_class: str): |
|
"""Sets processor class as an attribute.""" |
|
self._processor_class = processor_class |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
**kwargs, |
|
): |
|
r""" |
|
Instantiate a type of [`~image_processing_utils.ImageProcessingMixin`] from an image processor. |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a pretrained image_processor hosted inside a model repo on |
|
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or |
|
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- a path to a *directory* containing a image processor file saved using the |
|
[`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g., |
|
`./my_model_directory/`. |
|
- a path or url to a saved image processor JSON *file*, e.g., |
|
`./my_model_directory/preprocessor_config.json`. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model image processor should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force to (re-)download the image processor files and override the cached versions if |
|
they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file |
|
exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
token (`str` or `bool`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use |
|
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
|
|
|
|
<Tip> |
|
|
|
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". |
|
|
|
</Tip> |
|
|
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`): |
|
If `False`, then this function returns just the final image processor object. If `True`, then this |
|
functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary |
|
consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of |
|
`kwargs` which has not been used to update `image_processor` and is otherwise ignored. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can |
|
specify the folder name here. |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
The values in kwargs of any keys which are image processor attributes will be used to override the |
|
loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is |
|
controlled by the `return_unused_kwargs` keyword parameter. |
|
|
|
Returns: |
|
A image processor of type [`~image_processing_utils.ImageProcessingMixin`]. |
|
|
|
Examples: |
|
|
|
```python |
|
# We can't instantiate directly the base class *ImageProcessingMixin* so let's show the examples on a |
|
# derived class: *CLIPImageProcessor* |
|
image_processor = CLIPImageProcessor.from_pretrained( |
|
"openai/clip-vit-base-patch32" |
|
) # Download image_processing_config from huggingface.co and cache. |
|
image_processor = CLIPImageProcessor.from_pretrained( |
|
"./test/saved_model/" |
|
) # E.g. image processor (or model) was saved using *save_pretrained('./test/saved_model/')* |
|
image_processor = CLIPImageProcessor.from_pretrained("./test/saved_model/preprocessor_config.json") |
|
image_processor = CLIPImageProcessor.from_pretrained( |
|
"openai/clip-vit-base-patch32", do_normalize=False, foo=False |
|
) |
|
assert image_processor.do_normalize is False |
|
image_processor, unused_kwargs = CLIPImageProcessor.from_pretrained( |
|
"openai/clip-vit-base-patch32", do_normalize=False, foo=False, return_unused_kwargs=True |
|
) |
|
assert image_processor.do_normalize is False |
|
assert unused_kwargs == {"foo": False} |
|
```""" |
|
kwargs["cache_dir"] = cache_dir |
|
kwargs["force_download"] = force_download |
|
kwargs["local_files_only"] = local_files_only |
|
kwargs["revision"] = revision |
|
|
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
token = use_auth_token |
|
|
|
if token is not None: |
|
kwargs["token"] = token |
|
|
|
image_processor_dict, kwargs = cls.get_image_processor_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
return cls.from_dict(image_processor_dict, **kwargs) |
|
|
|
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): |
|
""" |
|
Save an image processor object to the directory `save_directory`, so that it can be re-loaded using the |
|
[`~image_processing_utils.ImageProcessingMixin.from_pretrained`] class method. |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory where the image processor JSON file will be saved (will be created if it does not exist). |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the |
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your |
|
namespace). |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. |
|
""" |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
|
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if kwargs.get("token", None) is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
kwargs["token"] = use_auth_token |
|
|
|
if os.path.isfile(save_directory): |
|
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
if push_to_hub: |
|
commit_message = kwargs.pop("commit_message", None) |
|
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) |
|
repo_id = self._create_repo(repo_id, **kwargs) |
|
files_timestamps = self._get_files_timestamps(save_directory) |
|
|
|
|
|
|
|
if self._auto_class is not None: |
|
custom_object_save(self, save_directory, config=self) |
|
|
|
|
|
output_image_processor_file = os.path.join(save_directory, IMAGE_PROCESSOR_NAME) |
|
|
|
self.to_json_file(output_image_processor_file) |
|
logger.info(f"Image processor saved in {output_image_processor_file}") |
|
|
|
if push_to_hub: |
|
self._upload_modified_files( |
|
save_directory, |
|
repo_id, |
|
files_timestamps, |
|
commit_message=commit_message, |
|
token=kwargs.get("token"), |
|
) |
|
|
|
return [output_image_processor_file] |
|
|
|
@classmethod |
|
def get_image_processor_dict( |
|
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs |
|
) -> Tuple[Dict[str, Any], Dict[str, Any]]: |
|
""" |
|
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a |
|
image processor of type [`~image_processor_utils.ImageProcessingMixin`] using `from_dict`. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can |
|
specify the folder name here. |
|
|
|
Returns: |
|
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the image processor object. |
|
""" |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
token = kwargs.pop("token", None) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
local_files_only = kwargs.pop("local_files_only", False) |
|
revision = kwargs.pop("revision", None) |
|
subfolder = kwargs.pop("subfolder", "") |
|
|
|
from_pipeline = kwargs.pop("_from_pipeline", None) |
|
from_auto_class = kwargs.pop("_from_auto", False) |
|
|
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
token = use_auth_token |
|
|
|
user_agent = {"file_type": "image processor", "from_auto_class": from_auto_class} |
|
if from_pipeline is not None: |
|
user_agent["using_pipeline"] = from_pipeline |
|
|
|
if is_offline_mode() and not local_files_only: |
|
logger.info("Offline mode: forcing local_files_only=True") |
|
local_files_only = True |
|
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
is_local = os.path.isdir(pretrained_model_name_or_path) |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
image_processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME) |
|
if os.path.isfile(pretrained_model_name_or_path): |
|
resolved_image_processor_file = pretrained_model_name_or_path |
|
is_local = True |
|
elif is_remote_url(pretrained_model_name_or_path): |
|
image_processor_file = pretrained_model_name_or_path |
|
resolved_image_processor_file = download_url(pretrained_model_name_or_path) |
|
else: |
|
image_processor_file = IMAGE_PROCESSOR_NAME |
|
try: |
|
|
|
resolved_image_processor_file = cached_file( |
|
pretrained_model_name_or_path, |
|
image_processor_file, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
user_agent=user_agent, |
|
revision=revision, |
|
subfolder=subfolder, |
|
) |
|
except EnvironmentError: |
|
|
|
|
|
raise |
|
except Exception: |
|
|
|
raise EnvironmentError( |
|
f"Can't load image processor for '{pretrained_model_name_or_path}'. If you were trying to load" |
|
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the" |
|
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" |
|
f" directory containing a {IMAGE_PROCESSOR_NAME} file" |
|
) |
|
|
|
try: |
|
|
|
with open(resolved_image_processor_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
image_processor_dict = json.loads(text) |
|
|
|
except json.JSONDecodeError: |
|
raise EnvironmentError( |
|
f"It looks like the config file at '{resolved_image_processor_file}' is not a valid JSON file." |
|
) |
|
|
|
if is_local: |
|
logger.info(f"loading configuration file {resolved_image_processor_file}") |
|
else: |
|
logger.info( |
|
f"loading configuration file {image_processor_file} from cache at {resolved_image_processor_file}" |
|
) |
|
|
|
if "auto_map" in image_processor_dict and not is_local: |
|
image_processor_dict["auto_map"] = add_model_info_to_auto_map( |
|
image_processor_dict["auto_map"], pretrained_model_name_or_path |
|
) |
|
|
|
return image_processor_dict, kwargs |
|
|
|
@classmethod |
|
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): |
|
""" |
|
Instantiates a type of [`~image_processing_utils.ImageProcessingMixin`] from a Python dictionary of parameters. |
|
|
|
Args: |
|
image_processor_dict (`Dict[str, Any]`): |
|
Dictionary that will be used to instantiate the image processor object. Such a dictionary can be |
|
retrieved from a pretrained checkpoint by leveraging the |
|
[`~image_processing_utils.ImageProcessingMixin.to_dict`] method. |
|
kwargs (`Dict[str, Any]`): |
|
Additional parameters from which to initialize the image processor object. |
|
|
|
Returns: |
|
[`~image_processing_utils.ImageProcessingMixin`]: The image processor object instantiated from those |
|
parameters. |
|
""" |
|
image_processor_dict = image_processor_dict.copy() |
|
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) |
|
|
|
|
|
|
|
|
|
if "size" in kwargs and "size" in image_processor_dict: |
|
image_processor_dict["size"] = kwargs.pop("size") |
|
if "crop_size" in kwargs and "crop_size" in image_processor_dict: |
|
image_processor_dict["crop_size"] = kwargs.pop("crop_size") |
|
|
|
image_processor = cls(**image_processor_dict) |
|
|
|
|
|
to_remove = [] |
|
for key, value in kwargs.items(): |
|
if hasattr(image_processor, key): |
|
setattr(image_processor, key, value) |
|
to_remove.append(key) |
|
for key in to_remove: |
|
kwargs.pop(key, None) |
|
|
|
logger.info(f"Image processor {image_processor}") |
|
if return_unused_kwargs: |
|
return image_processor, kwargs |
|
else: |
|
return image_processor |
|
|
|
def to_dict(self) -> Dict[str, Any]: |
|
""" |
|
Serializes this instance to a Python dictionary. |
|
|
|
Returns: |
|
`Dict[str, Any]`: Dictionary of all the attributes that make up this image processor instance. |
|
""" |
|
output = copy.deepcopy(self.__dict__) |
|
output["image_processor_type"] = self.__class__.__name__ |
|
|
|
return output |
|
|
|
@classmethod |
|
def from_json_file(cls, json_file: Union[str, os.PathLike]): |
|
""" |
|
Instantiates a image processor of type [`~image_processing_utils.ImageProcessingMixin`] from the path to a JSON |
|
file of parameters. |
|
|
|
Args: |
|
json_file (`str` or `os.PathLike`): |
|
Path to the JSON file containing the parameters. |
|
|
|
Returns: |
|
A image processor of type [`~image_processing_utils.ImageProcessingMixin`]: The image_processor object |
|
instantiated from that JSON file. |
|
""" |
|
with open(json_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
image_processor_dict = json.loads(text) |
|
return cls(**image_processor_dict) |
|
|
|
def to_json_string(self) -> str: |
|
""" |
|
Serializes this instance to a JSON string. |
|
|
|
Returns: |
|
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format. |
|
""" |
|
dictionary = self.to_dict() |
|
|
|
for key, value in dictionary.items(): |
|
if isinstance(value, np.ndarray): |
|
dictionary[key] = value.tolist() |
|
|
|
|
|
|
|
_processor_class = dictionary.pop("_processor_class", None) |
|
if _processor_class is not None: |
|
dictionary["processor_class"] = _processor_class |
|
|
|
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n" |
|
|
|
def to_json_file(self, json_file_path: Union[str, os.PathLike]): |
|
""" |
|
Save this instance to a JSON file. |
|
|
|
Args: |
|
json_file_path (`str` or `os.PathLike`): |
|
Path to the JSON file in which this image_processor instance's parameters will be saved. |
|
""" |
|
with open(json_file_path, "w", encoding="utf-8") as writer: |
|
writer.write(self.to_json_string()) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__} {self.to_json_string()}" |
|
|
|
@classmethod |
|
def register_for_auto_class(cls, auto_class="AutoImageProcessor"): |
|
""" |
|
Register this class with a given auto class. This should only be used for custom image processors as the ones |
|
in the library are already mapped with `AutoImageProcessor `. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is experimental and may have some slight breaking changes in the next releases. |
|
|
|
</Tip> |
|
|
|
Args: |
|
auto_class (`str` or `type`, *optional*, defaults to `"AutoImageProcessor "`): |
|
The auto class to register this new image processor with. |
|
""" |
|
if not isinstance(auto_class, str): |
|
auto_class = auto_class.__name__ |
|
|
|
import transformers.models.auto as auto_module |
|
|
|
if not hasattr(auto_module, auto_class): |
|
raise ValueError(f"{auto_class} is not a valid auto class.") |
|
|
|
cls._auto_class = auto_class |
|
|
|
def fetch_images(self, image_url_or_urls: Union[str, List[str]]): |
|
""" |
|
Convert a single or a list of urls into the corresponding `PIL.Image` objects. |
|
|
|
If a single url is passed, the return value will be a single object. If a list is passed a list of objects is |
|
returned. |
|
""" |
|
headers = { |
|
"User-Agent": ( |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0" |
|
" Safari/537.36" |
|
) |
|
} |
|
if isinstance(image_url_or_urls, list): |
|
return [self.fetch_images(x) for x in image_url_or_urls] |
|
elif isinstance(image_url_or_urls, str): |
|
response = requests.get(image_url_or_urls, stream=True, headers=headers) |
|
response.raise_for_status() |
|
return Image.open(BytesIO(response.content)) |
|
else: |
|
raise ValueError(f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}") |
|
|
|
|
|
class BaseImageProcessor(ImageProcessingMixin): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def __call__(self, images, **kwargs) -> BatchFeature: |
|
"""Preprocess an image or a batch of images.""" |
|
return self.preprocess(images, **kwargs) |
|
|
|
def preprocess(self, images, **kwargs) -> BatchFeature: |
|
raise NotImplementedError("Each image processor must implement its own preprocess method") |
|
|
|
def rescale( |
|
self, |
|
image: np.ndarray, |
|
scale: float, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Rescale an image by a scale factor. image = image * scale. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to rescale. |
|
scale (`float`): |
|
The scaling factor to rescale pixel values by. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the output image. If unset, the channel dimension format of the input |
|
image is used. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
|
|
Returns: |
|
`np.ndarray`: The rescaled image. |
|
""" |
|
return rescale(image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs) |
|
|
|
def normalize( |
|
self, |
|
image: np.ndarray, |
|
mean: Union[float, Iterable[float]], |
|
std: Union[float, Iterable[float]], |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Normalize an image. image = (image - image_mean) / image_std. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to normalize. |
|
mean (`float` or `Iterable[float]`): |
|
Image mean to use for normalization. |
|
std (`float` or `Iterable[float]`): |
|
Image standard deviation to use for normalization. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the output image. If unset, the channel dimension format of the input |
|
image is used. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
|
|
Returns: |
|
`np.ndarray`: The normalized image. |
|
""" |
|
return normalize( |
|
image, mean=mean, std=std, data_format=data_format, input_data_format=input_data_format, **kwargs |
|
) |
|
|
|
def center_crop( |
|
self, |
|
image: np.ndarray, |
|
size: Dict[str, int], |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along |
|
any edge, the image is padded with 0's and then center cropped. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to center crop. |
|
size (`Dict[str, int]`): |
|
Size of the output image. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the output image. If unset, the channel dimension format of the input |
|
image is used. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
""" |
|
size = get_size_dict(size) |
|
if "height" not in size or "width" not in size: |
|
raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}") |
|
return center_crop( |
|
image, |
|
size=(size["height"], size["width"]), |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
**kwargs, |
|
) |
|
|
|
|
|
VALID_SIZE_DICT_KEYS = ({"height", "width"}, {"shortest_edge"}, {"shortest_edge", "longest_edge"}, {"longest_edge"}) |
|
|
|
|
|
def is_valid_size_dict(size_dict): |
|
if not isinstance(size_dict, dict): |
|
return False |
|
|
|
size_dict_keys = set(size_dict.keys()) |
|
for allowed_keys in VALID_SIZE_DICT_KEYS: |
|
if size_dict_keys == allowed_keys: |
|
return True |
|
return False |
|
|
|
|
|
def convert_to_size_dict( |
|
size, max_size: Optional[int] = None, default_to_square: bool = True, height_width_order: bool = True |
|
): |
|
|
|
if isinstance(size, int) and default_to_square: |
|
if max_size is not None: |
|
raise ValueError("Cannot specify both size as an int, with default_to_square=True and max_size") |
|
return {"height": size, "width": size} |
|
|
|
|
|
elif isinstance(size, int) and not default_to_square: |
|
size_dict = {"shortest_edge": size} |
|
if max_size is not None: |
|
size_dict["longest_edge"] = max_size |
|
return size_dict |
|
|
|
elif isinstance(size, (tuple, list)) and height_width_order: |
|
return {"height": size[0], "width": size[1]} |
|
elif isinstance(size, (tuple, list)) and not height_width_order: |
|
return {"height": size[1], "width": size[0]} |
|
elif size is None and max_size is not None: |
|
if default_to_square: |
|
raise ValueError("Cannot specify both default_to_square=True and max_size") |
|
return {"longest_edge": max_size} |
|
|
|
raise ValueError(f"Could not convert size input to size dict: {size}") |
|
|
|
|
|
def get_size_dict( |
|
size: Union[int, Iterable[int], Dict[str, int]] = None, |
|
max_size: Optional[int] = None, |
|
height_width_order: bool = True, |
|
default_to_square: bool = True, |
|
param_name="size", |
|
) -> dict: |
|
""" |
|
Converts the old size parameter in the config into the new dict expected in the config. This is to ensure backwards |
|
compatibility with the old image processor configs and removes ambiguity over whether the tuple is in (height, |
|
width) or (width, height) format. |
|
|
|
- If `size` is tuple, it is converted to `{"height": size[0], "width": size[1]}` or `{"height": size[1], "width": |
|
size[0]}` if `height_width_order` is `False`. |
|
- If `size` is an int, and `default_to_square` is `True`, it is converted to `{"height": size, "width": size}`. |
|
- If `size` is an int and `default_to_square` is False, it is converted to `{"shortest_edge": size}`. If `max_size` |
|
is set, it is added to the dict as `{"longest_edge": max_size}`. |
|
|
|
Args: |
|
size (`Union[int, Iterable[int], Dict[str, int]]`, *optional*): |
|
The `size` parameter to be cast into a size dictionary. |
|
max_size (`Optional[int]`, *optional*): |
|
The `max_size` parameter to be cast into a size dictionary. |
|
height_width_order (`bool`, *optional*, defaults to `True`): |
|
If `size` is a tuple, whether it's in (height, width) or (width, height) order. |
|
default_to_square (`bool`, *optional*, defaults to `True`): |
|
If `size` is an int, whether to default to a square image or not. |
|
""" |
|
if not isinstance(size, dict): |
|
size_dict = convert_to_size_dict(size, max_size, default_to_square, height_width_order) |
|
logger.info( |
|
f"{param_name} should be a dictionary on of the following set of keys: {VALID_SIZE_DICT_KEYS}, got {size}." |
|
f" Converted to {size_dict}.", |
|
) |
|
else: |
|
size_dict = size |
|
|
|
if not is_valid_size_dict(size_dict): |
|
raise ValueError( |
|
f"{param_name} must have one of the following set of keys: {VALID_SIZE_DICT_KEYS}, got {size_dict.keys()}" |
|
) |
|
return size_dict |
|
|
|
|
|
ImageProcessingMixin.push_to_hub = copy_func(ImageProcessingMixin.push_to_hub) |
|
if ImageProcessingMixin.push_to_hub.__doc__ is not None: |
|
ImageProcessingMixin.push_to_hub.__doc__ = ImageProcessingMixin.push_to_hub.__doc__.format( |
|
object="image processor", object_class="AutoImageProcessor", object_files="image processor file" |
|
) |
|
|