|
|
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
import subprocess, io, os, sys, time |
|
from loguru import logger |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|
|
|
if os.environ.get('IS_MY_DEBUG') is None: |
|
result = subprocess.run(['pip', 'install', '-e', 'GroundingDINO'], check=True) |
|
print(f'pip install GroundingDINO = {result}') |
|
|
|
result = subprocess.run(['pip', 'list'], check=True) |
|
print(f'pip list = {result}') |
|
|
|
sys.path.insert(0, './GroundingDINO') |
|
|
|
if not os.path.exists('./sam_vit_h_4b8939.pth'): |
|
logger.info(f"get sam_vit_h_4b8939.pth...") |
|
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True) |
|
print(f'wget sam_vit_h_4b8939.pth result = {result}') |
|
|
|
import gradio as gr |
|
|
|
import argparse |
|
import copy |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image, ImageDraw, ImageFont, ImageOps |
|
|
|
|
|
import GroundingDINO.groundingdino.datasets.transforms as T |
|
from GroundingDINO.groundingdino.models import build_model |
|
from GroundingDINO.groundingdino.util import box_ops |
|
from GroundingDINO.groundingdino.util.slconfig import SLConfig |
|
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap |
|
|
|
import cv2 |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from lama_cleaner.model_manager import ModelManager |
|
from lama_cleaner.schema import Config as lama_Config |
|
|
|
|
|
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator |
|
|
|
|
|
import PIL |
|
import requests |
|
import torch |
|
from io import BytesIO |
|
from diffusers import StableDiffusionInpaintPipeline |
|
from huggingface_hub import hf_hub_download |
|
|
|
def load_model_hf(model_config_path, repo_id, filename, device='cpu'): |
|
args = SLConfig.fromfile(model_config_path) |
|
model = build_model(args) |
|
args.device = device |
|
|
|
cache_file = hf_hub_download(repo_id=repo_id, filename=filename) |
|
checkpoint = torch.load(cache_file, map_location=device) |
|
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) |
|
print("Model loaded from {} \n => {}".format(cache_file, log)) |
|
_ = model.eval() |
|
return model |
|
|
|
def plot_boxes_to_image(image_pil, tgt): |
|
H, W = tgt["size"] |
|
boxes = tgt["boxes"] |
|
labels = tgt["labels"] |
|
assert len(boxes) == len(labels), "boxes and labels must have same length" |
|
|
|
draw = ImageDraw.Draw(image_pil) |
|
mask = Image.new("L", image_pil.size, 0) |
|
mask_draw = ImageDraw.Draw(mask) |
|
|
|
|
|
for box, label in zip(boxes, labels): |
|
|
|
box = box * torch.Tensor([W, H, W, H]) |
|
|
|
box[:2] -= box[2:] / 2 |
|
box[2:] += box[:2] |
|
|
|
color = tuple(np.random.randint(0, 255, size=3).tolist()) |
|
|
|
x0, y0, x1, y1 = box |
|
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) |
|
|
|
draw.rectangle([x0, y0, x1, y1], outline=color, width=6) |
|
|
|
|
|
font = ImageFont.load_default() |
|
if hasattr(font, "getbbox"): |
|
bbox = draw.textbbox((x0, y0), str(label), font) |
|
else: |
|
w, h = draw.textsize(str(label), font) |
|
bbox = (x0, y0, w + x0, y0 + h) |
|
|
|
draw.rectangle(bbox, fill=color) |
|
font = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf') |
|
font_size = 36 |
|
new_font = ImageFont.truetype(font, font_size) |
|
|
|
draw.text((x0+2, y0+2), str(label), font=new_font, fill="white") |
|
|
|
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6) |
|
|
|
return image_pil, mask |
|
|
|
def load_image(image_path): |
|
|
|
if isinstance(image_path, PIL.Image.Image): |
|
image_pil = image_path |
|
else: |
|
image_pil = Image.open(image_path).convert("RGB") |
|
|
|
transform = T.Compose( |
|
[ |
|
T.RandomResize([800], max_size=1333), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
image, _ = transform(image_pil, None) |
|
return image_pil, image |
|
|
|
def load_model(model_config_path, model_checkpoint_path, device): |
|
args = SLConfig.fromfile(model_config_path) |
|
args.device = device |
|
model = build_model(args) |
|
checkpoint = torch.load(model_checkpoint_path, map_location=device) |
|
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) |
|
print(load_res) |
|
_ = model.eval() |
|
return model |
|
|
|
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"): |
|
caption = caption.lower() |
|
caption = caption.strip() |
|
if not caption.endswith("."): |
|
caption = caption + "." |
|
model = model.to(device) |
|
image = image.to(device) |
|
with torch.no_grad(): |
|
outputs = model(image[None], captions=[caption]) |
|
logits = outputs["pred_logits"].cpu().sigmoid()[0] |
|
boxes = outputs["pred_boxes"].cpu()[0] |
|
logits.shape[0] |
|
|
|
|
|
logits_filt = logits.clone() |
|
boxes_filt = boxes.clone() |
|
filt_mask = logits_filt.max(dim=1)[0] > box_threshold |
|
logits_filt = logits_filt[filt_mask] |
|
boxes_filt = boxes_filt[filt_mask] |
|
logits_filt.shape[0] |
|
|
|
|
|
tokenlizer = model.tokenizer |
|
tokenized = tokenlizer(caption) |
|
|
|
pred_phrases = [] |
|
for logit, box in zip(logits_filt, boxes_filt): |
|
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) |
|
if with_logits: |
|
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") |
|
else: |
|
pred_phrases.append(pred_phrase) |
|
|
|
return boxes_filt, pred_phrases |
|
|
|
def show_mask(mask, ax, random_color=False): |
|
if random_color: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
else: |
|
color = np.array([30/255, 144/255, 255/255, 0.6]) |
|
h, w = mask.shape[-2:] |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
ax.imshow(mask_image) |
|
|
|
def show_box(box, ax, label): |
|
x0, y0 = box[0], box[1] |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) |
|
ax.text(x0, y0, label) |
|
|
|
def xywh_to_xyxy(box, sizeW, sizeH): |
|
if isinstance(box, list): |
|
box = torch.Tensor(box) |
|
box = box * torch.Tensor([sizeW, sizeH, sizeW, sizeH]) |
|
box[:2] -= box[2:] / 2 |
|
box[2:] += box[:2] |
|
box = box.numpy() |
|
return box |
|
|
|
def mask_extend(img, box, extend_pixels=10, useRectangle=True): |
|
box[0] = int(box[0]) |
|
box[1] = int(box[1]) |
|
box[2] = int(box[2]) |
|
box[3] = int(box[3]) |
|
region = img.crop(tuple(box)) |
|
new_width = box[2] - box[0] + 2*extend_pixels |
|
new_height = box[3] - box[1] + 2*extend_pixels |
|
|
|
region_BILINEAR = region.resize((int(new_width), int(new_height))) |
|
if useRectangle: |
|
region_draw = ImageDraw.Draw(region_BILINEAR) |
|
region_draw.rectangle((0, 0, new_width, new_height), fill=(255, 255, 255)) |
|
img.paste(region_BILINEAR, (int(box[0]-extend_pixels), int(box[1]-extend_pixels))) |
|
return img |
|
|
|
def mix_masks(imgs): |
|
re_img = 1 - np.asarray(imgs[0].convert("1")) |
|
for i in range(len(imgs)-1): |
|
re_img = np.multiply(re_img, 1 - np.asarray(imgs[i+1].convert("1"))) |
|
re_img = 1 - re_img |
|
return Image.fromarray(np.uint8(255*re_img)) |
|
|
|
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py' |
|
ckpt_repo_id = "ShilongLiu/GroundingDINO" |
|
ckpt_filenmae = "groundingdino_swint_ogc.pth" |
|
sam_checkpoint = './sam_vit_h_4b8939.pth' |
|
output_dir = "outputs" |
|
device = evice = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
print(f'device={device}') |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
logger.info(f"initialize groundingdino model...") |
|
groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae) |
|
|
|
|
|
logger.info(f"initialize SAM model...") |
|
sam_model = build_sam(checkpoint=sam_checkpoint) |
|
sam_predictor = SamPredictor(sam_model) |
|
sam_mask_generator = SamAutomaticMaskGenerator(sam_model) |
|
|
|
|
|
logger.info(f"initialize stable-diffusion-inpainting...") |
|
sd_pipe = None |
|
if os.environ.get('IS_MY_DEBUG') is None: |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", |
|
torch_dtype=torch.float16 |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
|
|
|
|
logger.info(f"initialize lama_cleaner...") |
|
from lama_cleaner.helper import ( |
|
load_img, |
|
numpy_to_bytes, |
|
resize_max_size, |
|
) |
|
|
|
lama_cleaner_model = ModelManager( |
|
name='lama', |
|
device='cpu', |
|
) |
|
|
|
def lama_cleaner_process(image, mask): |
|
ori_image = image |
|
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]: |
|
|
|
ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...] |
|
image = ori_image |
|
|
|
original_shape = ori_image.shape |
|
interpolation = cv2.INTER_CUBIC |
|
|
|
size_limit = 1080 |
|
if size_limit == "Original": |
|
size_limit = max(image.shape) |
|
else: |
|
size_limit = int(size_limit) |
|
|
|
config = lama_Config( |
|
ldm_steps=25, |
|
ldm_sampler='plms', |
|
zits_wireframe=True, |
|
hd_strategy='Original', |
|
hd_strategy_crop_margin=196, |
|
hd_strategy_crop_trigger_size=1280, |
|
hd_strategy_resize_limit=2048, |
|
prompt='', |
|
use_croper=False, |
|
croper_x=0, |
|
croper_y=0, |
|
croper_height=512, |
|
croper_width=512, |
|
sd_mask_blur=5, |
|
sd_strength=0.75, |
|
sd_steps=50, |
|
sd_guidance_scale=7.5, |
|
sd_sampler='ddim', |
|
sd_seed=42, |
|
cv2_flag='INPAINT_NS', |
|
cv2_radius=5, |
|
) |
|
|
|
if config.sd_seed == -1: |
|
config.sd_seed = random.randint(1, 999999999) |
|
|
|
|
|
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation) |
|
|
|
|
|
|
|
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation) |
|
|
|
|
|
res_np_img = lama_cleaner_model(image, mask, config) |
|
torch.cuda.empty_cache() |
|
|
|
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png'))) |
|
return image |
|
|
|
|
|
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask |
|
from ram_train_eval import RamModel,RamPredictor |
|
from mmengine.config import Config as mmengine_Config |
|
input_size = 512 |
|
hidden_size = 256 |
|
num_classes = 56 |
|
|
|
|
|
model_path = "./checkpoints/ram_epoch12.pth" |
|
ram_config = dict( |
|
model=dict( |
|
pretrained_model_name_or_path='bert-base-uncased', |
|
load_pretrained_weights=False, |
|
num_transformer_layer=2, |
|
input_feature_size=256, |
|
output_feature_size=768, |
|
cls_feature_size=512, |
|
num_relation_classes=56, |
|
pred_type='attention', |
|
loss_type='multi_label_ce', |
|
), |
|
load_from=model_path, |
|
) |
|
ram_config = mmengine_Config(ram_config) |
|
|
|
class Ram_Predictor(RamPredictor): |
|
def __init__(self, config, device='cpu'): |
|
self.config = config |
|
self.device = torch.device(device) |
|
self._build_model() |
|
|
|
def _build_model(self): |
|
self.model = RamModel(**self.config.model).to(self.device) |
|
if self.config.load_from is not None: |
|
self.model.load_state_dict(torch.load(self.config.load_from, map_location=self.device)) |
|
self.model.train() |
|
|
|
ram_model = Ram_Predictor(ram_config, device) |
|
|
|
|
|
def draw_selected_mask(mask, draw): |
|
color = (255, 0, 0, 153) |
|
nonzero_coords = np.transpose(np.nonzero(mask)) |
|
for coord in nonzero_coords: |
|
draw.point(coord[::-1], fill=color) |
|
|
|
def draw_object_mask(mask, draw): |
|
color = (0, 0, 255, 153) |
|
nonzero_coords = np.transpose(np.nonzero(mask)) |
|
for coord in nonzero_coords: |
|
draw.point(coord[::-1], fill=color) |
|
|
|
def create_title_image(word1, word2, word3, width, font_path='./assets/OpenSans-Bold.ttf'): |
|
|
|
color_red = (255, 0, 0) |
|
color_black = (0, 0, 0) |
|
color_blue = (0, 0, 255) |
|
|
|
|
|
font_size = 40 |
|
|
|
|
|
image = Image.new('RGB', (width, 60), (255, 255, 255)) |
|
|
|
|
|
font = ImageFont.truetype(font_path, font_size) |
|
|
|
|
|
while True: |
|
|
|
draw = ImageDraw.Draw(image) |
|
|
|
word_spacing = font_size / 2 |
|
|
|
x_offset = word_spacing |
|
draw.text((x_offset, 0), word1, color_red, font=font) |
|
x_offset += font.getsize(word1)[0] + word_spacing |
|
draw.text((x_offset, 0), word2, color_black, font=font) |
|
x_offset += font.getsize(word2)[0] + word_spacing |
|
draw.text((x_offset, 0), word3, color_blue, font=font) |
|
|
|
word_sizes = [font.getsize(word) for word in [word1, word2, word3]] |
|
total_width = sum([size[0] for size in word_sizes]) + word_spacing * 3 |
|
|
|
|
|
if total_width <= width: |
|
break |
|
|
|
|
|
font_size -= 1 |
|
image = Image.new('RGB', (width, 50), (255, 255, 255)) |
|
font = ImageFont.truetype(font_path, font_size) |
|
draw = None |
|
|
|
return image |
|
|
|
def concatenate_images_vertical(image1, image2): |
|
|
|
width1, height1 = image1.size |
|
width2, height2 = image2.size |
|
|
|
|
|
new_image = Image.new('RGBA', (max(width1, width2), height1 + height2)) |
|
|
|
|
|
new_image.paste(image1, (0, 0)) |
|
|
|
|
|
new_image.paste(image2, (0, height1)) |
|
|
|
return new_image |
|
|
|
def relate_anything(input_image_mask, k): |
|
logger.info(f'relate_anything_1_') |
|
input_image = input_image_mask['image'] |
|
w, h = input_image.size |
|
max_edge = 1500 |
|
if w > max_edge or h > max_edge: |
|
ratio = max(w, h) / max_edge |
|
new_size = (int(w / ratio), int(h / ratio)) |
|
input_image.thumbnail(new_size) |
|
|
|
logger.info(f'relate_anything_2_') |
|
|
|
pil_image = input_image.convert('RGBA') |
|
image = np.array(input_image) |
|
sam_masks = sam_mask_generator.generate(image) |
|
filtered_masks = sort_and_deduplicate(sam_masks) |
|
|
|
logger.info(f'relate_anything_3_') |
|
feat_list = [] |
|
for fm in filtered_masks: |
|
feat = torch.Tensor(fm['feat']).unsqueeze(0).unsqueeze(0).to(device) |
|
feat_list.append(feat) |
|
feat = torch.cat(feat_list, dim=1).to(device) |
|
matrix_output, rel_triplets = ram_model.predict(feat) |
|
|
|
logger.info(f'relate_anything_4_') |
|
pil_image_list = [] |
|
for i, rel in enumerate(rel_triplets[:k]): |
|
s,o,r = int(rel[0]),int(rel[1]),int(rel[2]) |
|
relation = relation_classes[r] |
|
|
|
mask_image = Image.new('RGBA', pil_image.size, color=(0, 0, 0, 0)) |
|
mask_draw = ImageDraw.Draw(mask_image) |
|
|
|
draw_selected_mask(filtered_masks[s]['segmentation'], mask_draw) |
|
draw_object_mask(filtered_masks[o]['segmentation'], mask_draw) |
|
|
|
current_pil_image = pil_image.copy() |
|
current_pil_image.alpha_composite(mask_image) |
|
|
|
title_image = create_title_image('Red', relation, 'Blue', current_pil_image.size[0]) |
|
concate_pil_image = concatenate_images_vertical(current_pil_image, title_image) |
|
pil_image_list.append(concate_pil_image) |
|
|
|
logger.info(f'relate_anything_5_') |
|
yield pil_image_list |
|
|
|
|
|
mask_source_draw = "draw a mask on input image" |
|
mask_source_segment = "type what to detect below" |
|
|
|
def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, |
|
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation): |
|
text_prompt = text_prompt.strip() |
|
if not ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw): |
|
if text_prompt == '': |
|
return [], gr.Gallery.update(label='Detection prompt is not found!😂😂😂😂') |
|
|
|
if input_image is None: |
|
return [], gr.Gallery.update(label='Please upload a image!😂😂😂😂') |
|
|
|
file_temp = int(time.time()) |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}/{inpaint_mode}/[{mask_source_radio}]/{remove_mode}/{remove_mask_extend}_[{text_prompt}]/[{inpaint_prompt}]___1_') |
|
|
|
|
|
input_mask_pil = input_image['mask'] |
|
input_mask = np.array(input_mask_pil.convert("L")) |
|
|
|
image_pil, image = load_image(input_image['image'].convert("RGB")) |
|
|
|
|
|
|
|
|
|
size = image_pil.size |
|
|
|
output_images = [] |
|
|
|
|
|
if (task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw: |
|
pass |
|
else: |
|
groundingdino_device = 'cpu' |
|
if device != 'cpu': |
|
try: |
|
from groundingdino import _C |
|
groundingdino_device = 'cuda:0' |
|
except: |
|
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!") |
|
|
|
groundingdino_device = 'cpu' |
|
boxes_filt, pred_phrases = get_grounding_output( |
|
groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device |
|
) |
|
if boxes_filt.size(0) == 0: |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_[{text_prompt}]_1_[No objects detected, please try others.]_') |
|
return [], gr.Gallery.update(label='No objects detected, please try others.😂😂😂😂') |
|
boxes_filt_ori = copy.deepcopy(boxes_filt) |
|
|
|
pred_dict = { |
|
"boxes": boxes_filt, |
|
"size": [size[1], size[0]], |
|
"labels": pred_phrases, |
|
} |
|
image_with_box = plot_boxes_to_image(copy.deepcopy(image_pil), pred_dict)[0] |
|
image_path = os.path.join(output_dir, f"grounding_dino_output_{file_temp}.jpg") |
|
image_with_box.save(image_path) |
|
detection_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) |
|
os.remove(image_path) |
|
output_images.append(detection_image_result) |
|
|
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_') |
|
if task_type == 'segment' or ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_segment): |
|
image = np.array(input_image['image']) |
|
sam_predictor.set_image(image) |
|
|
|
H, W = size[1], size[0] |
|
for i in range(boxes_filt.size(0)): |
|
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) |
|
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 |
|
boxes_filt[i][2:] += boxes_filt[i][:2] |
|
|
|
boxes_filt = boxes_filt.cpu() |
|
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]) |
|
|
|
masks, _, _, _ = sam_predictor.predict_torch( |
|
point_coords = None, |
|
point_labels = None, |
|
boxes = transformed_boxes, |
|
multimask_output = False, |
|
) |
|
|
|
assert sam_checkpoint, 'sam_checkpoint is not found!' |
|
|
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image) |
|
for mask in masks: |
|
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) |
|
for box, label in zip(boxes_filt, pred_phrases): |
|
show_box(box.numpy(), plt.gca(), label) |
|
plt.axis('off') |
|
image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg") |
|
plt.savefig(image_path, bbox_inches="tight") |
|
segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) |
|
os.remove(image_path) |
|
output_images.append(segment_image_result) |
|
|
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_') |
|
if task_type == 'detection' or task_type == 'segment': |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_') |
|
return output_images, gr.Gallery.update(label='result images') |
|
elif task_type == 'inpainting' or task_type == 'remove': |
|
if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment: |
|
task_type = 'remove' |
|
|
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_4_') |
|
if mask_source_radio == mask_source_draw: |
|
mask_pil = input_mask_pil |
|
mask = input_mask |
|
else: |
|
masks_ori = copy.deepcopy(masks) |
|
if inpaint_mode == 'merge': |
|
masks = torch.sum(masks, dim=0).unsqueeze(0) |
|
masks = torch.where(masks > 0, True, False) |
|
mask = masks[0][0].cpu().numpy() |
|
mask_pil = Image.fromarray(mask) |
|
|
|
image_path = os.path.join(output_dir, f"image_mask_{file_temp}.jpg") |
|
|
|
|
|
mask_pil.convert("RGB").save(image_path) |
|
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) |
|
os.remove(image_path) |
|
output_images.append(image_result) |
|
|
|
if task_type == 'inpainting': |
|
|
|
image_source_for_inpaint = image_pil.resize((512, 512)) |
|
image_mask_for_inpaint = mask_pil.resize((512, 512)) |
|
image_inpainting = sd_pipe(prompt=inpaint_prompt, image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0] |
|
else: |
|
|
|
if mask_source_radio == mask_source_segment: |
|
mask_imgs = [] |
|
masks_shape = masks_ori.shape |
|
boxes_filt_ori_array = boxes_filt_ori.numpy() |
|
if inpaint_mode == 'merge': |
|
extend_shape_0 = masks_shape[0] |
|
extend_shape_1 = masks_shape[1] |
|
else: |
|
extend_shape_0 = 1 |
|
extend_shape_1 = 1 |
|
for i in range(extend_shape_0): |
|
for j in range(extend_shape_1): |
|
mask = masks_ori[i][j].cpu().numpy() |
|
mask_pil = Image.fromarray(mask) |
|
|
|
if remove_mode == 'segment': |
|
useRectangle = False |
|
else: |
|
useRectangle = True |
|
|
|
try: |
|
remove_mask_extend = int(remove_mask_extend) |
|
except: |
|
remove_mask_extend = 10 |
|
mask_pil_exp = mask_extend(copy.deepcopy(mask_pil).convert("RGB"), |
|
xywh_to_xyxy(torch.tensor(boxes_filt_ori_array[i]), size[0], size[1]), |
|
extend_pixels=remove_mask_extend, useRectangle=useRectangle) |
|
mask_imgs.append(mask_pil_exp) |
|
mask_pil = mix_masks(mask_imgs) |
|
|
|
image_path = os.path.join(output_dir, f"image_mask_{file_temp}.jpg") |
|
|
|
|
|
mask_pil.convert("RGB").save(image_path) |
|
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) |
|
os.remove(image_path) |
|
output_images.append(image_result) |
|
image_inpainting = lama_cleaner_process(np.array(image_pil), np.array(mask_pil.convert("L"))) |
|
|
|
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1])) |
|
|
|
image_path = os.path.join(output_dir, f"grounded_sam_inpainting_output_{file_temp}.jpg") |
|
image_inpainting.save(image_path) |
|
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) |
|
os.remove(image_path) |
|
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_') |
|
output_images.append(image_result) |
|
return output_images, gr.Gallery.update(label='result images') |
|
else: |
|
logger.info(f"task_type:{task_type} error!") |
|
logger.info(f'run_anything_task_[{file_temp}]_9_9_') |
|
return output_images, gr.Gallery.update(label='result images') |
|
|
|
def change_radio_display(task_type, mask_source_radio): |
|
text_prompt_visible = True |
|
inpaint_prompt_visible = False |
|
mask_source_radio_visible = False |
|
num_relation_visible = False |
|
run_button_visible = True |
|
relate_all_button_visible = False |
|
gsa_gallery_visible = True |
|
ram_gallery_visible = False |
|
if task_type == "inpainting": |
|
inpaint_prompt_visible = True |
|
if task_type == "inpainting" or task_type == "remove": |
|
mask_source_radio_visible = True |
|
if mask_source_radio == mask_source_draw: |
|
text_prompt_visible = False |
|
if task_type == "relate anything": |
|
text_prompt_visible = False |
|
num_relation_visible = True |
|
run_button_visible = False |
|
relate_all_button_visible = True |
|
gsa_gallery_visible = False |
|
ram_gallery_visible = True |
|
return gr.Textbox.update(visible=text_prompt_visible), gr.Textbox.update(visible=inpaint_prompt_visible), gr.Radio.update(visible=mask_source_radio_visible), gr.Slider.update(visible=num_relation_visible), gr.Button.update(visible=run_button_visible), gr.Button.update(visible=relate_all_button_visible), gr.Gallery.update(visible=gsa_gallery_visible), gr.Gallery.update(visible=ram_gallery_visible) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True) |
|
parser.add_argument("--debug", action="store_true", help="using debug mode") |
|
parser.add_argument("--share", action="store_true", help="share the app") |
|
args = parser.parse_args() |
|
|
|
print(f'args = {args}') |
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload") |
|
task_type = gr.Radio(["detection", "segment", "inpainting", "remove", "relate anything"], value="detection", |
|
label='Task type', visible=True) |
|
mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment], |
|
value=mask_source_segment, label="Mask from", |
|
visible=False) |
|
text_prompt = gr.Textbox(label="Detection Prompt[To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ]", placeholder="Cannot be empty") |
|
inpaint_prompt = gr.Textbox(label="Inpaint Prompt (if this is empty, then remove)", visible=False) |
|
num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1, visible=False) |
|
run_button = gr.Button(label="Run", visible=True) |
|
relate_all_button = gr.Button(label="Run", visible=False) |
|
with gr.Accordion("Advanced options", open=False) as advanced_options: |
|
box_threshold = gr.Slider( |
|
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001 |
|
) |
|
text_threshold = gr.Slider( |
|
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 |
|
) |
|
iou_threshold = gr.Slider( |
|
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001 |
|
) |
|
inpaint_mode = gr.Radio(["merge", "first"], value="merge", label="inpaint_mode") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
remove_mode = gr.Radio(["segment", "rectangle"], value="segment", label='remove mode') |
|
with gr.Column(scale=1): |
|
remove_mask_extend = gr.Textbox(label="remove_mask_extend", value='10') |
|
|
|
with gr.Column(): |
|
gsa_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gsa_allery" |
|
).style(grid=[2], full_width=True, full_height=True, visible=True) |
|
ram_gallery = gr.Gallery(label="Your Result", show_label=True, elem_id="ram_gallery" |
|
).style(preview=True, object_fit="scale-down", visible=False) |
|
|
|
run_button.click(fn=run_anything_task, inputs=[ |
|
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation], outputs=[gsa_gallery, gsa_gallery], show_progress=True, queue=True) |
|
relate_all_button.click(fn=relate_anything, inputs=[input_image, num_relation], outputs=[ram_gallery], show_progress=True, queue=True) |
|
|
|
task_type.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation, run_button, relate_all_button, gsa_gallery, ram_gallery]) |
|
mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation, run_button, relate_all_button, gsa_gallery, ram_gallery]) |
|
|
|
DESCRIPTION = '### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). <br>' |
|
DESCRIPTION += 'RAM from [RelateAnything](https://github.com/Luodian/RelateAnything). <br>' |
|
DESCRIPTION += 'Thanks for their excellent work.' |
|
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>' |
|
gr.Markdown(DESCRIPTION) |
|
|
|
block.launch(server_name='0.0.0.0', debug=args.debug, share=args.share) |
|
|