Spaces:
Running
on
T4
Running
on
T4
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Very heavily inspired by the official evaluation script for SQuAD version 2.0 which was modified by XLNet authors to | |
update `find_best_threshold` scripts for SQuAD V2.0 | |
In addition to basic functionality, we also compute additional statistics and plot precision-recall curves if an | |
additional na_prob.json file is provided. This file is expected to map question ID's to the model's predicted | |
probability that a question is unanswerable. | |
""" | |
import collections | |
import json | |
import math | |
import re | |
import string | |
from ...models.bert import BasicTokenizer | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
def normalize_answer(s): | |
"""Lower text and remove punctuation, articles and extra whitespace.""" | |
def remove_articles(text): | |
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) | |
return re.sub(regex, " ", text) | |
def white_space_fix(text): | |
return " ".join(text.split()) | |
def remove_punc(text): | |
exclude = set(string.punctuation) | |
return "".join(ch for ch in text if ch not in exclude) | |
def lower(text): | |
return text.lower() | |
return white_space_fix(remove_articles(remove_punc(lower(s)))) | |
def get_tokens(s): | |
if not s: | |
return [] | |
return normalize_answer(s).split() | |
def compute_exact(a_gold, a_pred): | |
return int(normalize_answer(a_gold) == normalize_answer(a_pred)) | |
def compute_f1(a_gold, a_pred): | |
gold_toks = get_tokens(a_gold) | |
pred_toks = get_tokens(a_pred) | |
common = collections.Counter(gold_toks) & collections.Counter(pred_toks) | |
num_same = sum(common.values()) | |
if len(gold_toks) == 0 or len(pred_toks) == 0: | |
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise | |
return int(gold_toks == pred_toks) | |
if num_same == 0: | |
return 0 | |
precision = 1.0 * num_same / len(pred_toks) | |
recall = 1.0 * num_same / len(gold_toks) | |
f1 = (2 * precision * recall) / (precision + recall) | |
return f1 | |
def get_raw_scores(examples, preds): | |
""" | |
Computes the exact and f1 scores from the examples and the model predictions | |
""" | |
exact_scores = {} | |
f1_scores = {} | |
for example in examples: | |
qas_id = example.qas_id | |
gold_answers = [answer["text"] for answer in example.answers if normalize_answer(answer["text"])] | |
if not gold_answers: | |
# For unanswerable questions, only correct answer is empty string | |
gold_answers = [""] | |
if qas_id not in preds: | |
print(f"Missing prediction for {qas_id}") | |
continue | |
prediction = preds[qas_id] | |
exact_scores[qas_id] = max(compute_exact(a, prediction) for a in gold_answers) | |
f1_scores[qas_id] = max(compute_f1(a, prediction) for a in gold_answers) | |
return exact_scores, f1_scores | |
def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh): | |
new_scores = {} | |
for qid, s in scores.items(): | |
pred_na = na_probs[qid] > na_prob_thresh | |
if pred_na: | |
new_scores[qid] = float(not qid_to_has_ans[qid]) | |
else: | |
new_scores[qid] = s | |
return new_scores | |
def make_eval_dict(exact_scores, f1_scores, qid_list=None): | |
if not qid_list: | |
total = len(exact_scores) | |
return collections.OrderedDict( | |
[ | |
("exact", 100.0 * sum(exact_scores.values()) / total), | |
("f1", 100.0 * sum(f1_scores.values()) / total), | |
("total", total), | |
] | |
) | |
else: | |
total = len(qid_list) | |
return collections.OrderedDict( | |
[ | |
("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), | |
("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total), | |
("total", total), | |
] | |
) | |
def merge_eval(main_eval, new_eval, prefix): | |
for k in new_eval: | |
main_eval[f"{prefix}_{k}"] = new_eval[k] | |
def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans): | |
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) | |
cur_score = num_no_ans | |
best_score = cur_score | |
best_thresh = 0.0 | |
qid_list = sorted(na_probs, key=lambda k: na_probs[k]) | |
for i, qid in enumerate(qid_list): | |
if qid not in scores: | |
continue | |
if qid_to_has_ans[qid]: | |
diff = scores[qid] | |
else: | |
if preds[qid]: | |
diff = -1 | |
else: | |
diff = 0 | |
cur_score += diff | |
if cur_score > best_score: | |
best_score = cur_score | |
best_thresh = na_probs[qid] | |
has_ans_score, has_ans_cnt = 0, 0 | |
for qid in qid_list: | |
if not qid_to_has_ans[qid]: | |
continue | |
has_ans_cnt += 1 | |
if qid not in scores: | |
continue | |
has_ans_score += scores[qid] | |
return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt | |
def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): | |
best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans) | |
best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans) | |
main_eval["best_exact"] = best_exact | |
main_eval["best_exact_thresh"] = exact_thresh | |
main_eval["best_f1"] = best_f1 | |
main_eval["best_f1_thresh"] = f1_thresh | |
main_eval["has_ans_exact"] = has_ans_exact | |
main_eval["has_ans_f1"] = has_ans_f1 | |
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans): | |
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) | |
cur_score = num_no_ans | |
best_score = cur_score | |
best_thresh = 0.0 | |
qid_list = sorted(na_probs, key=lambda k: na_probs[k]) | |
for _, qid in enumerate(qid_list): | |
if qid not in scores: | |
continue | |
if qid_to_has_ans[qid]: | |
diff = scores[qid] | |
else: | |
if preds[qid]: | |
diff = -1 | |
else: | |
diff = 0 | |
cur_score += diff | |
if cur_score > best_score: | |
best_score = cur_score | |
best_thresh = na_probs[qid] | |
return 100.0 * best_score / len(scores), best_thresh | |
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): | |
best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans) | |
best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans) | |
main_eval["best_exact"] = best_exact | |
main_eval["best_exact_thresh"] = exact_thresh | |
main_eval["best_f1"] = best_f1 | |
main_eval["best_f1_thresh"] = f1_thresh | |
def squad_evaluate(examples, preds, no_answer_probs=None, no_answer_probability_threshold=1.0): | |
qas_id_to_has_answer = {example.qas_id: bool(example.answers) for example in examples} | |
has_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if has_answer] | |
no_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if not has_answer] | |
if no_answer_probs is None: | |
no_answer_probs = {k: 0.0 for k in preds} | |
exact, f1 = get_raw_scores(examples, preds) | |
exact_threshold = apply_no_ans_threshold( | |
exact, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold | |
) | |
f1_threshold = apply_no_ans_threshold(f1, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold) | |
evaluation = make_eval_dict(exact_threshold, f1_threshold) | |
if has_answer_qids: | |
has_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=has_answer_qids) | |
merge_eval(evaluation, has_ans_eval, "HasAns") | |
if no_answer_qids: | |
no_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=no_answer_qids) | |
merge_eval(evaluation, no_ans_eval, "NoAns") | |
if no_answer_probs: | |
find_all_best_thresh(evaluation, preds, exact, f1, no_answer_probs, qas_id_to_has_answer) | |
return evaluation | |
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): | |
"""Project the tokenized prediction back to the original text.""" | |
# When we created the data, we kept track of the alignment between original | |
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So | |
# now `orig_text` contains the span of our original text corresponding to the | |
# span that we predicted. | |
# | |
# However, `orig_text` may contain extra characters that we don't want in | |
# our prediction. | |
# | |
# For example, let's say: | |
# pred_text = steve smith | |
# orig_text = Steve Smith's | |
# | |
# We don't want to return `orig_text` because it contains the extra "'s". | |
# | |
# We don't want to return `pred_text` because it's already been normalized | |
# (the SQuAD eval script also does punctuation stripping/lower casing but | |
# our tokenizer does additional normalization like stripping accent | |
# characters). | |
# | |
# What we really want to return is "Steve Smith". | |
# | |
# Therefore, we have to apply a semi-complicated alignment heuristic between | |
# `pred_text` and `orig_text` to get a character-to-character alignment. This | |
# can fail in certain cases in which case we just return `orig_text`. | |
def _strip_spaces(text): | |
ns_chars = [] | |
ns_to_s_map = collections.OrderedDict() | |
for i, c in enumerate(text): | |
if c == " ": | |
continue | |
ns_to_s_map[len(ns_chars)] = i | |
ns_chars.append(c) | |
ns_text = "".join(ns_chars) | |
return (ns_text, ns_to_s_map) | |
# We first tokenize `orig_text`, strip whitespace from the result | |
# and `pred_text`, and check if they are the same length. If they are | |
# NOT the same length, the heuristic has failed. If they are the same | |
# length, we assume the characters are one-to-one aligned. | |
tokenizer = BasicTokenizer(do_lower_case=do_lower_case) | |
tok_text = " ".join(tokenizer.tokenize(orig_text)) | |
start_position = tok_text.find(pred_text) | |
if start_position == -1: | |
if verbose_logging: | |
logger.info(f"Unable to find text: '{pred_text}' in '{orig_text}'") | |
return orig_text | |
end_position = start_position + len(pred_text) - 1 | |
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) | |
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) | |
if len(orig_ns_text) != len(tok_ns_text): | |
if verbose_logging: | |
logger.info(f"Length not equal after stripping spaces: '{orig_ns_text}' vs '{tok_ns_text}'") | |
return orig_text | |
# We then project the characters in `pred_text` back to `orig_text` using | |
# the character-to-character alignment. | |
tok_s_to_ns_map = {} | |
for i, tok_index in tok_ns_to_s_map.items(): | |
tok_s_to_ns_map[tok_index] = i | |
orig_start_position = None | |
if start_position in tok_s_to_ns_map: | |
ns_start_position = tok_s_to_ns_map[start_position] | |
if ns_start_position in orig_ns_to_s_map: | |
orig_start_position = orig_ns_to_s_map[ns_start_position] | |
if orig_start_position is None: | |
if verbose_logging: | |
logger.info("Couldn't map start position") | |
return orig_text | |
orig_end_position = None | |
if end_position in tok_s_to_ns_map: | |
ns_end_position = tok_s_to_ns_map[end_position] | |
if ns_end_position in orig_ns_to_s_map: | |
orig_end_position = orig_ns_to_s_map[ns_end_position] | |
if orig_end_position is None: | |
if verbose_logging: | |
logger.info("Couldn't map end position") | |
return orig_text | |
output_text = orig_text[orig_start_position : (orig_end_position + 1)] | |
return output_text | |
def _get_best_indexes(logits, n_best_size): | |
"""Get the n-best logits from a list.""" | |
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) | |
best_indexes = [] | |
for i in range(len(index_and_score)): | |
if i >= n_best_size: | |
break | |
best_indexes.append(index_and_score[i][0]) | |
return best_indexes | |
def _compute_softmax(scores): | |
"""Compute softmax probability over raw logits.""" | |
if not scores: | |
return [] | |
max_score = None | |
for score in scores: | |
if max_score is None or score > max_score: | |
max_score = score | |
exp_scores = [] | |
total_sum = 0.0 | |
for score in scores: | |
x = math.exp(score - max_score) | |
exp_scores.append(x) | |
total_sum += x | |
probs = [] | |
for score in exp_scores: | |
probs.append(score / total_sum) | |
return probs | |
def compute_predictions_logits( | |
all_examples, | |
all_features, | |
all_results, | |
n_best_size, | |
max_answer_length, | |
do_lower_case, | |
output_prediction_file, | |
output_nbest_file, | |
output_null_log_odds_file, | |
verbose_logging, | |
version_2_with_negative, | |
null_score_diff_threshold, | |
tokenizer, | |
): | |
"""Write final predictions to the json file and log-odds of null if needed.""" | |
if output_prediction_file: | |
logger.info(f"Writing predictions to: {output_prediction_file}") | |
if output_nbest_file: | |
logger.info(f"Writing nbest to: {output_nbest_file}") | |
if output_null_log_odds_file and version_2_with_negative: | |
logger.info(f"Writing null_log_odds to: {output_null_log_odds_file}") | |
example_index_to_features = collections.defaultdict(list) | |
for feature in all_features: | |
example_index_to_features[feature.example_index].append(feature) | |
unique_id_to_result = {} | |
for result in all_results: | |
unique_id_to_result[result.unique_id] = result | |
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"] | |
) | |
all_predictions = collections.OrderedDict() | |
all_nbest_json = collections.OrderedDict() | |
scores_diff_json = collections.OrderedDict() | |
for example_index, example in enumerate(all_examples): | |
features = example_index_to_features[example_index] | |
prelim_predictions = [] | |
# keep track of the minimum score of null start+end of position 0 | |
score_null = 1000000 # large and positive | |
min_null_feature_index = 0 # the paragraph slice with min null score | |
null_start_logit = 0 # the start logit at the slice with min null score | |
null_end_logit = 0 # the end logit at the slice with min null score | |
for feature_index, feature in enumerate(features): | |
result = unique_id_to_result[feature.unique_id] | |
start_indexes = _get_best_indexes(result.start_logits, n_best_size) | |
end_indexes = _get_best_indexes(result.end_logits, n_best_size) | |
# if we could have irrelevant answers, get the min score of irrelevant | |
if version_2_with_negative: | |
feature_null_score = result.start_logits[0] + result.end_logits[0] | |
if feature_null_score < score_null: | |
score_null = feature_null_score | |
min_null_feature_index = feature_index | |
null_start_logit = result.start_logits[0] | |
null_end_logit = result.end_logits[0] | |
for start_index in start_indexes: | |
for end_index in end_indexes: | |
# We could hypothetically create invalid predictions, e.g., predict | |
# that the start of the span is in the question. We throw out all | |
# invalid predictions. | |
if start_index >= len(feature.tokens): | |
continue | |
if end_index >= len(feature.tokens): | |
continue | |
if start_index not in feature.token_to_orig_map: | |
continue | |
if end_index not in feature.token_to_orig_map: | |
continue | |
if not feature.token_is_max_context.get(start_index, False): | |
continue | |
if end_index < start_index: | |
continue | |
length = end_index - start_index + 1 | |
if length > max_answer_length: | |
continue | |
prelim_predictions.append( | |
_PrelimPrediction( | |
feature_index=feature_index, | |
start_index=start_index, | |
end_index=end_index, | |
start_logit=result.start_logits[start_index], | |
end_logit=result.end_logits[end_index], | |
) | |
) | |
if version_2_with_negative: | |
prelim_predictions.append( | |
_PrelimPrediction( | |
feature_index=min_null_feature_index, | |
start_index=0, | |
end_index=0, | |
start_logit=null_start_logit, | |
end_logit=null_end_logit, | |
) | |
) | |
prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) | |
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"NbestPrediction", ["text", "start_logit", "end_logit"] | |
) | |
seen_predictions = {} | |
nbest = [] | |
for pred in prelim_predictions: | |
if len(nbest) >= n_best_size: | |
break | |
feature = features[pred.feature_index] | |
if pred.start_index > 0: # this is a non-null prediction | |
tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] | |
orig_doc_start = feature.token_to_orig_map[pred.start_index] | |
orig_doc_end = feature.token_to_orig_map[pred.end_index] | |
orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)] | |
tok_text = tokenizer.convert_tokens_to_string(tok_tokens) | |
# tok_text = " ".join(tok_tokens) | |
# | |
# # De-tokenize WordPieces that have been split off. | |
# tok_text = tok_text.replace(" ##", "") | |
# tok_text = tok_text.replace("##", "") | |
# Clean whitespace | |
tok_text = tok_text.strip() | |
tok_text = " ".join(tok_text.split()) | |
orig_text = " ".join(orig_tokens) | |
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) | |
if final_text in seen_predictions: | |
continue | |
seen_predictions[final_text] = True | |
else: | |
final_text = "" | |
seen_predictions[final_text] = True | |
nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) | |
# if we didn't include the empty option in the n-best, include it | |
if version_2_with_negative: | |
if "" not in seen_predictions: | |
nbest.append(_NbestPrediction(text="", start_logit=null_start_logit, end_logit=null_end_logit)) | |
# In very rare edge cases we could only have single null prediction. | |
# So we just create a nonce prediction in this case to avoid failure. | |
if len(nbest) == 1: | |
nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) | |
# In very rare edge cases we could have no valid predictions. So we | |
# just create a nonce prediction in this case to avoid failure. | |
if not nbest: | |
nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) | |
if len(nbest) < 1: | |
raise ValueError("No valid predictions") | |
total_scores = [] | |
best_non_null_entry = None | |
for entry in nbest: | |
total_scores.append(entry.start_logit + entry.end_logit) | |
if not best_non_null_entry: | |
if entry.text: | |
best_non_null_entry = entry | |
probs = _compute_softmax(total_scores) | |
nbest_json = [] | |
for i, entry in enumerate(nbest): | |
output = collections.OrderedDict() | |
output["text"] = entry.text | |
output["probability"] = probs[i] | |
output["start_logit"] = entry.start_logit | |
output["end_logit"] = entry.end_logit | |
nbest_json.append(output) | |
if len(nbest_json) < 1: | |
raise ValueError("No valid predictions") | |
if not version_2_with_negative: | |
all_predictions[example.qas_id] = nbest_json[0]["text"] | |
else: | |
# predict "" iff the null score - the score of best non-null > threshold | |
score_diff = score_null - best_non_null_entry.start_logit - (best_non_null_entry.end_logit) | |
scores_diff_json[example.qas_id] = score_diff | |
if score_diff > null_score_diff_threshold: | |
all_predictions[example.qas_id] = "" | |
else: | |
all_predictions[example.qas_id] = best_non_null_entry.text | |
all_nbest_json[example.qas_id] = nbest_json | |
if output_prediction_file: | |
with open(output_prediction_file, "w") as writer: | |
writer.write(json.dumps(all_predictions, indent=4) + "\n") | |
if output_nbest_file: | |
with open(output_nbest_file, "w") as writer: | |
writer.write(json.dumps(all_nbest_json, indent=4) + "\n") | |
if output_null_log_odds_file and version_2_with_negative: | |
with open(output_null_log_odds_file, "w") as writer: | |
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") | |
return all_predictions | |
def compute_predictions_log_probs( | |
all_examples, | |
all_features, | |
all_results, | |
n_best_size, | |
max_answer_length, | |
output_prediction_file, | |
output_nbest_file, | |
output_null_log_odds_file, | |
start_n_top, | |
end_n_top, | |
version_2_with_negative, | |
tokenizer, | |
verbose_logging, | |
): | |
""" | |
XLNet write prediction logic (more complex than Bert's). Write final predictions to the json file and log-odds of | |
null if needed. | |
Requires utils_squad_evaluate.py | |
""" | |
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"PrelimPrediction", ["feature_index", "start_index", "end_index", "start_log_prob", "end_log_prob"] | |
) | |
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"NbestPrediction", ["text", "start_log_prob", "end_log_prob"] | |
) | |
logger.info(f"Writing predictions to: {output_prediction_file}") | |
example_index_to_features = collections.defaultdict(list) | |
for feature in all_features: | |
example_index_to_features[feature.example_index].append(feature) | |
unique_id_to_result = {} | |
for result in all_results: | |
unique_id_to_result[result.unique_id] = result | |
all_predictions = collections.OrderedDict() | |
all_nbest_json = collections.OrderedDict() | |
scores_diff_json = collections.OrderedDict() | |
for example_index, example in enumerate(all_examples): | |
features = example_index_to_features[example_index] | |
prelim_predictions = [] | |
# keep track of the minimum score of null start+end of position 0 | |
score_null = 1000000 # large and positive | |
for feature_index, feature in enumerate(features): | |
result = unique_id_to_result[feature.unique_id] | |
cur_null_score = result.cls_logits | |
# if we could have irrelevant answers, get the min score of irrelevant | |
score_null = min(score_null, cur_null_score) | |
for i in range(start_n_top): | |
for j in range(end_n_top): | |
start_log_prob = result.start_logits[i] | |
start_index = result.start_top_index[i] | |
j_index = i * end_n_top + j | |
end_log_prob = result.end_logits[j_index] | |
end_index = result.end_top_index[j_index] | |
# We could hypothetically create invalid predictions, e.g., predict | |
# that the start of the span is in the question. We throw out all | |
# invalid predictions. | |
if start_index >= feature.paragraph_len - 1: | |
continue | |
if end_index >= feature.paragraph_len - 1: | |
continue | |
if not feature.token_is_max_context.get(start_index, False): | |
continue | |
if end_index < start_index: | |
continue | |
length = end_index - start_index + 1 | |
if length > max_answer_length: | |
continue | |
prelim_predictions.append( | |
_PrelimPrediction( | |
feature_index=feature_index, | |
start_index=start_index, | |
end_index=end_index, | |
start_log_prob=start_log_prob, | |
end_log_prob=end_log_prob, | |
) | |
) | |
prelim_predictions = sorted( | |
prelim_predictions, key=lambda x: (x.start_log_prob + x.end_log_prob), reverse=True | |
) | |
seen_predictions = {} | |
nbest = [] | |
for pred in prelim_predictions: | |
if len(nbest) >= n_best_size: | |
break | |
feature = features[pred.feature_index] | |
# XLNet un-tokenizer | |
# Let's keep it simple for now and see if we need all this later. | |
# | |
# tok_start_to_orig_index = feature.tok_start_to_orig_index | |
# tok_end_to_orig_index = feature.tok_end_to_orig_index | |
# start_orig_pos = tok_start_to_orig_index[pred.start_index] | |
# end_orig_pos = tok_end_to_orig_index[pred.end_index] | |
# paragraph_text = example.paragraph_text | |
# final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip() | |
# Previously used Bert untokenizer | |
tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] | |
orig_doc_start = feature.token_to_orig_map[pred.start_index] | |
orig_doc_end = feature.token_to_orig_map[pred.end_index] | |
orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)] | |
tok_text = tokenizer.convert_tokens_to_string(tok_tokens) | |
# Clean whitespace | |
tok_text = tok_text.strip() | |
tok_text = " ".join(tok_text.split()) | |
orig_text = " ".join(orig_tokens) | |
if hasattr(tokenizer, "do_lower_case"): | |
do_lower_case = tokenizer.do_lower_case | |
else: | |
do_lower_case = tokenizer.do_lowercase_and_remove_accent | |
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) | |
if final_text in seen_predictions: | |
continue | |
seen_predictions[final_text] = True | |
nbest.append( | |
_NbestPrediction(text=final_text, start_log_prob=pred.start_log_prob, end_log_prob=pred.end_log_prob) | |
) | |
# In very rare edge cases we could have no valid predictions. So we | |
# just create a nonce prediction in this case to avoid failure. | |
if not nbest: | |
nbest.append(_NbestPrediction(text="", start_log_prob=-1e6, end_log_prob=-1e6)) | |
total_scores = [] | |
best_non_null_entry = None | |
for entry in nbest: | |
total_scores.append(entry.start_log_prob + entry.end_log_prob) | |
if not best_non_null_entry: | |
best_non_null_entry = entry | |
probs = _compute_softmax(total_scores) | |
nbest_json = [] | |
for i, entry in enumerate(nbest): | |
output = collections.OrderedDict() | |
output["text"] = entry.text | |
output["probability"] = probs[i] | |
output["start_log_prob"] = entry.start_log_prob | |
output["end_log_prob"] = entry.end_log_prob | |
nbest_json.append(output) | |
if len(nbest_json) < 1: | |
raise ValueError("No valid predictions") | |
if best_non_null_entry is None: | |
raise ValueError("No valid predictions") | |
score_diff = score_null | |
scores_diff_json[example.qas_id] = score_diff | |
# note(zhiliny): always predict best_non_null_entry | |
# and the evaluation script will search for the best threshold | |
all_predictions[example.qas_id] = best_non_null_entry.text | |
all_nbest_json[example.qas_id] = nbest_json | |
with open(output_prediction_file, "w") as writer: | |
writer.write(json.dumps(all_predictions, indent=4) + "\n") | |
with open(output_nbest_file, "w") as writer: | |
writer.write(json.dumps(all_nbest_json, indent=4) + "\n") | |
if version_2_with_negative: | |
with open(output_null_log_odds_file, "w") as writer: | |
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") | |
return all_predictions | |