Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2021 Facebook AI Research (FAIR), Ross Wightman, The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch DeiT model.""" | |
import collections.abc | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Set, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPooling, | |
ImageClassifierOutput, | |
MaskedImageModelingOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_deit import DeiTConfig | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "DeiTConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224" | |
_EXPECTED_OUTPUT_SHAPE = [1, 198, 768] | |
# Image classification docstring | |
_IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224" | |
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" | |
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"facebook/deit-base-distilled-patch16-224", | |
# See all DeiT models at https://huggingface.co/models?filter=deit | |
] | |
class DeiTEmbeddings(nn.Module): | |
""" | |
Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token. | |
""" | |
def __init__(self, config: DeiTConfig, use_mask_token: bool = False) -> None: | |
super().__init__() | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None | |
self.patch_embeddings = DeiTPatchEmbeddings(config) | |
num_patches = self.patch_embeddings.num_patches | |
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size)) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor: | |
embeddings = self.patch_embeddings(pixel_values) | |
batch_size, seq_length, _ = embeddings.size() | |
if bool_masked_pos is not None: | |
mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) | |
# replace the masked visual tokens by mask_tokens | |
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) | |
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask | |
cls_tokens = self.cls_token.expand(batch_size, -1, -1) | |
distillation_tokens = self.distillation_token.expand(batch_size, -1, -1) | |
embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1) | |
embeddings = embeddings + self.position_embeddings | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class DeiTPatchEmbeddings(nn.Module): | |
""" | |
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial | |
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a | |
Transformer. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
image_size, patch_size = config.image_size, config.patch_size | |
num_channels, hidden_size = config.num_channels, config.hidden_size | |
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.num_patches = num_patches | |
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) | |
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: | |
batch_size, num_channels, height, width = pixel_values.shape | |
if num_channels != self.num_channels: | |
raise ValueError( | |
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
) | |
if height != self.image_size[0] or width != self.image_size[1]: | |
raise ValueError( | |
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." | |
) | |
x = self.projection(pixel_values).flatten(2).transpose(1, 2) | |
return x | |
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DeiT | |
class DeiTSelfAttention(nn.Module): | |
def __init__(self, config: DeiTConfig) -> None: | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " | |
f"heads {config.num_attention_heads}." | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DeiT | |
class DeiTSelfOutput(nn.Module): | |
""" | |
The residual connection is defined in DeiTLayer instead of here (as is the case with other models), due to the | |
layernorm applied before each block. | |
""" | |
def __init__(self, config: DeiTConfig) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->DeiT | |
class DeiTAttention(nn.Module): | |
def __init__(self, config: DeiTConfig) -> None: | |
super().__init__() | |
self.attention = DeiTSelfAttention(config) | |
self.output = DeiTSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads: Set[int]) -> None: | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.attention.query = prune_linear_layer(self.attention.query, index) | |
self.attention.key = prune_linear_layer(self.attention.key, index) | |
self.attention.value = prune_linear_layer(self.attention.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | |
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
self_outputs = self.attention(hidden_states, head_mask, output_attentions) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DeiT | |
class DeiTIntermediate(nn.Module): | |
def __init__(self, config: DeiTConfig) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DeiT | |
class DeiTOutput(nn.Module): | |
def __init__(self, config: DeiTConfig) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = hidden_states + input_tensor | |
return hidden_states | |
# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->DeiT | |
class DeiTLayer(nn.Module): | |
"""This corresponds to the Block class in the timm implementation.""" | |
def __init__(self, config: DeiTConfig) -> None: | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = DeiTAttention(config) | |
self.intermediate = DeiTIntermediate(config) | |
self.output = DeiTOutput(config) | |
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
self_attention_outputs = self.attention( | |
self.layernorm_before(hidden_states), # in DeiT, layernorm is applied before self-attention | |
head_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
# first residual connection | |
hidden_states = attention_output + hidden_states | |
# in DeiT, layernorm is also applied after self-attention | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.intermediate(layer_output) | |
# second residual connection is done here | |
layer_output = self.output(layer_output, hidden_states) | |
outputs = (layer_output,) + outputs | |
return outputs | |
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->DeiT | |
class DeiTEncoder(nn.Module): | |
def __init__(self, config: DeiTConfig) -> None: | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([DeiTLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
) -> Union[tuple, BaseModelOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
layer_head_mask, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class DeiTPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = DeiTConfig | |
base_model_prefix = "deit" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["DeiTLayer"] | |
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid | |
# `trunc_normal_cpu` not implemented in `half` issues | |
module.weight.data = nn.init.trunc_normal_( | |
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range | |
).to(module.weight.dtype) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _set_gradient_checkpointing(self, module: DeiTEncoder, value: bool = False) -> None: | |
if isinstance(module, DeiTEncoder): | |
module.gradient_checkpointing = value | |
DEIT_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`DeiTConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
DEIT_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`DeiTImageProcessor.__call__`] for details. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class DeiTModel(DeiTPreTrainedModel): | |
def __init__(self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False) -> None: | |
super().__init__(config) | |
self.config = config | |
self.embeddings = DeiTEmbeddings(config, use_mask_token=use_mask_token) | |
self.encoder = DeiTEncoder(config) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.pooler = DeiTPooler(config) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> DeiTPatchEmbeddings: | |
return self.embeddings.patch_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): | |
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
# TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) | |
expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype | |
if pixel_values.dtype != expected_dtype: | |
pixel_values = pixel_values.to(expected_dtype) | |
embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) | |
return head_outputs + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
# Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DeiT | |
class DeiTPooler(nn.Module): | |
def __init__(self, config: DeiTConfig): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class DeiTForMaskedImageModeling(DeiTPreTrainedModel): | |
def __init__(self, config: DeiTConfig) -> None: | |
super().__init__(config) | |
self.deit = DeiTModel(config, add_pooling_layer=False, use_mask_token=True) | |
self.decoder = nn.Sequential( | |
nn.Conv2d( | |
in_channels=config.hidden_size, | |
out_channels=config.encoder_stride**2 * config.num_channels, | |
kernel_size=1, | |
), | |
nn.PixelShuffle(config.encoder_stride), | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, MaskedImageModelingOutput]: | |
r""" | |
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): | |
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, DeiTForMaskedImageModeling | |
>>> import torch | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") | |
>>> model = DeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224") | |
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 | |
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values | |
>>> # create random boolean mask of shape (batch_size, num_patches) | |
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() | |
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) | |
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction | |
>>> list(reconstructed_pixel_values.shape) | |
[1, 3, 224, 224] | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.deit( | |
pixel_values, | |
bool_masked_pos=bool_masked_pos, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
# Reshape to (batch_size, num_channels, height, width) | |
sequence_output = sequence_output[:, 1:-1] | |
batch_size, sequence_length, num_channels = sequence_output.shape | |
height = width = int(sequence_length**0.5) | |
sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) | |
# Reconstruct pixel values | |
reconstructed_pixel_values = self.decoder(sequence_output) | |
masked_im_loss = None | |
if bool_masked_pos is not None: | |
size = self.config.image_size // self.config.patch_size | |
bool_masked_pos = bool_masked_pos.reshape(-1, size, size) | |
mask = ( | |
bool_masked_pos.repeat_interleave(self.config.patch_size, 1) | |
.repeat_interleave(self.config.patch_size, 2) | |
.unsqueeze(1) | |
.contiguous() | |
) | |
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") | |
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels | |
if not return_dict: | |
output = (reconstructed_pixel_values,) + outputs[1:] | |
return ((masked_im_loss,) + output) if masked_im_loss is not None else output | |
return MaskedImageModelingOutput( | |
loss=masked_im_loss, | |
reconstruction=reconstructed_pixel_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class DeiTForImageClassification(DeiTPreTrainedModel): | |
def __init__(self, config: DeiTConfig) -> None: | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.deit = DeiTModel(config, add_pooling_layer=False) | |
# Classifier head | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, ImageClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, DeiTForImageClassification | |
>>> import torch | |
>>> from PIL import Image | |
>>> import requests | |
>>> torch.manual_seed(3) # doctest: +IGNORE_RESULT | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> # note: we are loading a DeiTForImageClassificationWithTeacher from the hub here, | |
>>> # so the head will be randomly initialized, hence the predictions will be random | |
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") | |
>>> model = DeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224") | |
>>> inputs = image_processor(images=image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits | |
>>> # model predicts one of the 1000 ImageNet classes | |
>>> predicted_class_idx = logits.argmax(-1).item() | |
>>> print("Predicted class:", model.config.id2label[predicted_class_idx]) | |
Predicted class: magpie | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.deit( | |
pixel_values, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output[:, 0, :]) | |
# we don't use the distillation token | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return ImageClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class DeiTForImageClassificationWithTeacherOutput(ModelOutput): | |
""" | |
Output type of [`DeiTForImageClassificationWithTeacher`]. | |
Args: | |
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): | |
Prediction scores as the average of the cls_logits and distillation logits. | |
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): | |
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the | |
class token). | |
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): | |
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the | |
distillation token). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer | |
plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in | |
the self-attention heads. | |
""" | |
logits: torch.FloatTensor = None | |
cls_logits: torch.FloatTensor = None | |
distillation_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class DeiTForImageClassificationWithTeacher(DeiTPreTrainedModel): | |
def __init__(self, config: DeiTConfig) -> None: | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.deit = DeiTModel(config, add_pooling_layer=False) | |
# Classifier heads | |
self.cls_classifier = ( | |
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
) | |
self.distillation_classifier = ( | |
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, DeiTForImageClassificationWithTeacherOutput]: | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.deit( | |
pixel_values, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
cls_logits = self.cls_classifier(sequence_output[:, 0, :]) | |
distillation_logits = self.distillation_classifier(sequence_output[:, 1, :]) | |
# during inference, return the average of both classifier predictions | |
logits = (cls_logits + distillation_logits) / 2 | |
if not return_dict: | |
output = (logits, cls_logits, distillation_logits) + outputs[1:] | |
return output | |
return DeiTForImageClassificationWithTeacherOutput( | |
logits=logits, | |
cls_logits=cls_logits, | |
distillation_logits=distillation_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |