Spaces:
Running
on
T4
Running
on
T4
import os | |
from functools import partial, reduce | |
from typing import TYPE_CHECKING, Callable, Dict, Optional, Tuple, Type, Union | |
import transformers | |
from .. import PretrainedConfig, is_tf_available, is_torch_available | |
from ..utils import TF2_WEIGHTS_NAME, WEIGHTS_NAME, logging | |
from .config import OnnxConfig | |
if TYPE_CHECKING: | |
from transformers import PreTrainedModel, TFPreTrainedModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
if is_torch_available(): | |
from transformers.models.auto import ( | |
AutoModel, | |
AutoModelForCausalLM, | |
AutoModelForImageClassification, | |
AutoModelForImageSegmentation, | |
AutoModelForMaskedImageModeling, | |
AutoModelForMaskedLM, | |
AutoModelForMultipleChoice, | |
AutoModelForObjectDetection, | |
AutoModelForQuestionAnswering, | |
AutoModelForSemanticSegmentation, | |
AutoModelForSeq2SeqLM, | |
AutoModelForSequenceClassification, | |
AutoModelForSpeechSeq2Seq, | |
AutoModelForTokenClassification, | |
AutoModelForVision2Seq, | |
) | |
if is_tf_available(): | |
from transformers.models.auto import ( | |
TFAutoModel, | |
TFAutoModelForCausalLM, | |
TFAutoModelForMaskedLM, | |
TFAutoModelForMultipleChoice, | |
TFAutoModelForQuestionAnswering, | |
TFAutoModelForSemanticSegmentation, | |
TFAutoModelForSeq2SeqLM, | |
TFAutoModelForSequenceClassification, | |
TFAutoModelForTokenClassification, | |
) | |
if not is_torch_available() and not is_tf_available(): | |
logger.warning( | |
"The ONNX export features are only supported for PyTorch or TensorFlow. You will not be able to export models" | |
" without one of these libraries installed." | |
) | |
def supported_features_mapping( | |
*supported_features: str, onnx_config_cls: str = None | |
) -> Dict[str, Callable[[PretrainedConfig], OnnxConfig]]: | |
""" | |
Generate the mapping between supported the features and their corresponding OnnxConfig for a given model. | |
Args: | |
*supported_features: The names of the supported features. | |
onnx_config_cls: The OnnxConfig full name corresponding to the model. | |
Returns: | |
The dictionary mapping a feature to an OnnxConfig constructor. | |
""" | |
if onnx_config_cls is None: | |
raise ValueError("A OnnxConfig class must be provided") | |
config_cls = transformers | |
for attr_name in onnx_config_cls.split("."): | |
config_cls = getattr(config_cls, attr_name) | |
mapping = {} | |
for feature in supported_features: | |
if "-with-past" in feature: | |
task = feature.replace("-with-past", "") | |
mapping[feature] = partial(config_cls.with_past, task=task) | |
else: | |
mapping[feature] = partial(config_cls.from_model_config, task=feature) | |
return mapping | |
class FeaturesManager: | |
_TASKS_TO_AUTOMODELS = {} | |
_TASKS_TO_TF_AUTOMODELS = {} | |
if is_torch_available(): | |
_TASKS_TO_AUTOMODELS = { | |
"default": AutoModel, | |
"masked-lm": AutoModelForMaskedLM, | |
"causal-lm": AutoModelForCausalLM, | |
"seq2seq-lm": AutoModelForSeq2SeqLM, | |
"sequence-classification": AutoModelForSequenceClassification, | |
"token-classification": AutoModelForTokenClassification, | |
"multiple-choice": AutoModelForMultipleChoice, | |
"object-detection": AutoModelForObjectDetection, | |
"question-answering": AutoModelForQuestionAnswering, | |
"image-classification": AutoModelForImageClassification, | |
"image-segmentation": AutoModelForImageSegmentation, | |
"masked-im": AutoModelForMaskedImageModeling, | |
"semantic-segmentation": AutoModelForSemanticSegmentation, | |
"vision2seq-lm": AutoModelForVision2Seq, | |
"speech2seq-lm": AutoModelForSpeechSeq2Seq, | |
} | |
if is_tf_available(): | |
_TASKS_TO_TF_AUTOMODELS = { | |
"default": TFAutoModel, | |
"masked-lm": TFAutoModelForMaskedLM, | |
"causal-lm": TFAutoModelForCausalLM, | |
"seq2seq-lm": TFAutoModelForSeq2SeqLM, | |
"sequence-classification": TFAutoModelForSequenceClassification, | |
"token-classification": TFAutoModelForTokenClassification, | |
"multiple-choice": TFAutoModelForMultipleChoice, | |
"question-answering": TFAutoModelForQuestionAnswering, | |
"semantic-segmentation": TFAutoModelForSemanticSegmentation, | |
} | |
# Set of model topologies we support associated to the features supported by each topology and the factory | |
_SUPPORTED_MODEL_TYPE = { | |
"albert": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.albert.AlbertOnnxConfig", | |
), | |
"bart": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"causal-lm", | |
"causal-lm-with-past", | |
"seq2seq-lm", | |
"seq2seq-lm-with-past", | |
"sequence-classification", | |
"question-answering", | |
onnx_config_cls="models.bart.BartOnnxConfig", | |
), | |
# BEiT cannot be used with the masked image modeling autoclass, so this feature is excluded here | |
"beit": supported_features_mapping( | |
"default", "image-classification", onnx_config_cls="models.beit.BeitOnnxConfig" | |
), | |
"bert": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"causal-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.bert.BertOnnxConfig", | |
), | |
"big-bird": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"causal-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.big_bird.BigBirdOnnxConfig", | |
), | |
"bigbird-pegasus": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"causal-lm", | |
"causal-lm-with-past", | |
"seq2seq-lm", | |
"seq2seq-lm-with-past", | |
"sequence-classification", | |
"question-answering", | |
onnx_config_cls="models.bigbird_pegasus.BigBirdPegasusOnnxConfig", | |
), | |
"blenderbot": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"causal-lm", | |
"causal-lm-with-past", | |
"seq2seq-lm", | |
"seq2seq-lm-with-past", | |
onnx_config_cls="models.blenderbot.BlenderbotOnnxConfig", | |
), | |
"blenderbot-small": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"causal-lm", | |
"causal-lm-with-past", | |
"seq2seq-lm", | |
"seq2seq-lm-with-past", | |
onnx_config_cls="models.blenderbot_small.BlenderbotSmallOnnxConfig", | |
), | |
"bloom": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"causal-lm", | |
"causal-lm-with-past", | |
"sequence-classification", | |
"token-classification", | |
onnx_config_cls="models.bloom.BloomOnnxConfig", | |
), | |
"camembert": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"causal-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.camembert.CamembertOnnxConfig", | |
), | |
"clip": supported_features_mapping( | |
"default", | |
onnx_config_cls="models.clip.CLIPOnnxConfig", | |
), | |
"codegen": supported_features_mapping( | |
"default", | |
"causal-lm", | |
onnx_config_cls="models.codegen.CodeGenOnnxConfig", | |
), | |
"convbert": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.convbert.ConvBertOnnxConfig", | |
), | |
"convnext": supported_features_mapping( | |
"default", | |
"image-classification", | |
onnx_config_cls="models.convnext.ConvNextOnnxConfig", | |
), | |
"data2vec-text": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.data2vec.Data2VecTextOnnxConfig", | |
), | |
"data2vec-vision": supported_features_mapping( | |
"default", | |
"image-classification", | |
# ONNX doesn't support `adaptive_avg_pool2d` yet | |
# "semantic-segmentation", | |
onnx_config_cls="models.data2vec.Data2VecVisionOnnxConfig", | |
), | |
"deberta": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"sequence-classification", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.deberta.DebertaOnnxConfig", | |
), | |
"deberta-v2": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.deberta_v2.DebertaV2OnnxConfig", | |
), | |
"deit": supported_features_mapping( | |
"default", "image-classification", onnx_config_cls="models.deit.DeiTOnnxConfig" | |
), | |
"detr": supported_features_mapping( | |
"default", | |
"object-detection", | |
"image-segmentation", | |
onnx_config_cls="models.detr.DetrOnnxConfig", | |
), | |
"distilbert": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.distilbert.DistilBertOnnxConfig", | |
), | |
"electra": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"causal-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.electra.ElectraOnnxConfig", | |
), | |
"flaubert": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"causal-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.flaubert.FlaubertOnnxConfig", | |
), | |
"gpt2": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"causal-lm", | |
"causal-lm-with-past", | |
"sequence-classification", | |
"token-classification", | |
onnx_config_cls="models.gpt2.GPT2OnnxConfig", | |
), | |
"gptj": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"causal-lm", | |
"causal-lm-with-past", | |
"question-answering", | |
"sequence-classification", | |
onnx_config_cls="models.gptj.GPTJOnnxConfig", | |
), | |
"gpt-neo": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"causal-lm", | |
"causal-lm-with-past", | |
"sequence-classification", | |
onnx_config_cls="models.gpt_neo.GPTNeoOnnxConfig", | |
), | |
"groupvit": supported_features_mapping( | |
"default", | |
onnx_config_cls="models.groupvit.GroupViTOnnxConfig", | |
), | |
"ibert": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.ibert.IBertOnnxConfig", | |
), | |
"imagegpt": supported_features_mapping( | |
"default", "image-classification", onnx_config_cls="models.imagegpt.ImageGPTOnnxConfig" | |
), | |
"layoutlm": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"sequence-classification", | |
"token-classification", | |
onnx_config_cls="models.layoutlm.LayoutLMOnnxConfig", | |
), | |
"layoutlmv3": supported_features_mapping( | |
"default", | |
"question-answering", | |
"sequence-classification", | |
"token-classification", | |
onnx_config_cls="models.layoutlmv3.LayoutLMv3OnnxConfig", | |
), | |
"levit": supported_features_mapping( | |
"default", "image-classification", onnx_config_cls="models.levit.LevitOnnxConfig" | |
), | |
"longt5": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"seq2seq-lm", | |
"seq2seq-lm-with-past", | |
onnx_config_cls="models.longt5.LongT5OnnxConfig", | |
), | |
"longformer": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"multiple-choice", | |
"question-answering", | |
"sequence-classification", | |
"token-classification", | |
onnx_config_cls="models.longformer.LongformerOnnxConfig", | |
), | |
"marian": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"seq2seq-lm", | |
"seq2seq-lm-with-past", | |
"causal-lm", | |
"causal-lm-with-past", | |
onnx_config_cls="models.marian.MarianOnnxConfig", | |
), | |
"mbart": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"causal-lm", | |
"causal-lm-with-past", | |
"seq2seq-lm", | |
"seq2seq-lm-with-past", | |
"sequence-classification", | |
"question-answering", | |
onnx_config_cls="models.mbart.MBartOnnxConfig", | |
), | |
"mobilebert": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.mobilebert.MobileBertOnnxConfig", | |
), | |
"mobilenet-v1": supported_features_mapping( | |
"default", | |
"image-classification", | |
onnx_config_cls="models.mobilenet_v1.MobileNetV1OnnxConfig", | |
), | |
"mobilenet-v2": supported_features_mapping( | |
"default", | |
"image-classification", | |
onnx_config_cls="models.mobilenet_v2.MobileNetV2OnnxConfig", | |
), | |
"mobilevit": supported_features_mapping( | |
"default", | |
"image-classification", | |
onnx_config_cls="models.mobilevit.MobileViTOnnxConfig", | |
), | |
"mt5": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"seq2seq-lm", | |
"seq2seq-lm-with-past", | |
onnx_config_cls="models.mt5.MT5OnnxConfig", | |
), | |
"m2m-100": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"seq2seq-lm", | |
"seq2seq-lm-with-past", | |
onnx_config_cls="models.m2m_100.M2M100OnnxConfig", | |
), | |
"owlvit": supported_features_mapping( | |
"default", | |
onnx_config_cls="models.owlvit.OwlViTOnnxConfig", | |
), | |
"perceiver": supported_features_mapping( | |
"image-classification", | |
"masked-lm", | |
"sequence-classification", | |
onnx_config_cls="models.perceiver.PerceiverOnnxConfig", | |
), | |
"poolformer": supported_features_mapping( | |
"default", "image-classification", onnx_config_cls="models.poolformer.PoolFormerOnnxConfig" | |
), | |
"rembert": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"causal-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.rembert.RemBertOnnxConfig", | |
), | |
"resnet": supported_features_mapping( | |
"default", | |
"image-classification", | |
onnx_config_cls="models.resnet.ResNetOnnxConfig", | |
), | |
"roberta": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"causal-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.roberta.RobertaOnnxConfig", | |
), | |
"roformer": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"causal-lm", | |
"sequence-classification", | |
"token-classification", | |
"multiple-choice", | |
"question-answering", | |
"token-classification", | |
onnx_config_cls="models.roformer.RoFormerOnnxConfig", | |
), | |
"segformer": supported_features_mapping( | |
"default", | |
"image-classification", | |
"semantic-segmentation", | |
onnx_config_cls="models.segformer.SegformerOnnxConfig", | |
), | |
"squeezebert": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.squeezebert.SqueezeBertOnnxConfig", | |
), | |
"swin": supported_features_mapping( | |
"default", "image-classification", onnx_config_cls="models.swin.SwinOnnxConfig" | |
), | |
"t5": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"seq2seq-lm", | |
"seq2seq-lm-with-past", | |
onnx_config_cls="models.t5.T5OnnxConfig", | |
), | |
"vision-encoder-decoder": supported_features_mapping( | |
"vision2seq-lm", onnx_config_cls="models.vision_encoder_decoder.VisionEncoderDecoderOnnxConfig" | |
), | |
"vit": supported_features_mapping( | |
"default", "image-classification", onnx_config_cls="models.vit.ViTOnnxConfig" | |
), | |
"whisper": supported_features_mapping( | |
"default", | |
"default-with-past", | |
"speech2seq-lm", | |
"speech2seq-lm-with-past", | |
onnx_config_cls="models.whisper.WhisperOnnxConfig", | |
), | |
"xlm": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"causal-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.xlm.XLMOnnxConfig", | |
), | |
"xlm-roberta": supported_features_mapping( | |
"default", | |
"masked-lm", | |
"causal-lm", | |
"sequence-classification", | |
"multiple-choice", | |
"token-classification", | |
"question-answering", | |
onnx_config_cls="models.xlm_roberta.XLMRobertaOnnxConfig", | |
), | |
"yolos": supported_features_mapping( | |
"default", | |
"object-detection", | |
onnx_config_cls="models.yolos.YolosOnnxConfig", | |
), | |
} | |
AVAILABLE_FEATURES = sorted(reduce(lambda s1, s2: s1 | s2, (v.keys() for v in _SUPPORTED_MODEL_TYPE.values()))) | |
def get_supported_features_for_model_type( | |
model_type: str, model_name: Optional[str] = None | |
) -> Dict[str, Callable[[PretrainedConfig], OnnxConfig]]: | |
""" | |
Tries to retrieve the feature -> OnnxConfig constructor map from the model type. | |
Args: | |
model_type (`str`): | |
The model type to retrieve the supported features for. | |
model_name (`str`, *optional*): | |
The name attribute of the model object, only used for the exception message. | |
Returns: | |
The dictionary mapping each feature to a corresponding OnnxConfig constructor. | |
""" | |
model_type = model_type.lower() | |
if model_type not in FeaturesManager._SUPPORTED_MODEL_TYPE: | |
model_type_and_model_name = f"{model_type} ({model_name})" if model_name else model_type | |
raise KeyError( | |
f"{model_type_and_model_name} is not supported yet. " | |
f"Only {list(FeaturesManager._SUPPORTED_MODEL_TYPE.keys())} are supported. " | |
f"If you want to support {model_type} please propose a PR or open up an issue." | |
) | |
return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type] | |
def feature_to_task(feature: str) -> str: | |
return feature.replace("-with-past", "") | |
def _validate_framework_choice(framework: str): | |
""" | |
Validates if the framework requested for the export is both correct and available, otherwise throws an | |
exception. | |
""" | |
if framework not in ["pt", "tf"]: | |
raise ValueError( | |
f"Only two frameworks are supported for ONNX export: pt or tf, but {framework} was provided." | |
) | |
elif framework == "pt" and not is_torch_available(): | |
raise RuntimeError("Cannot export model to ONNX using PyTorch because no PyTorch package was found.") | |
elif framework == "tf" and not is_tf_available(): | |
raise RuntimeError("Cannot export model to ONNX using TensorFlow because no TensorFlow package was found.") | |
def get_model_class_for_feature(feature: str, framework: str = "pt") -> Type: | |
""" | |
Attempts to retrieve an AutoModel class from a feature name. | |
Args: | |
feature (`str`): | |
The feature required. | |
framework (`str`, *optional*, defaults to `"pt"`): | |
The framework to use for the export. | |
Returns: | |
The AutoModel class corresponding to the feature. | |
""" | |
task = FeaturesManager.feature_to_task(feature) | |
FeaturesManager._validate_framework_choice(framework) | |
if framework == "pt": | |
task_to_automodel = FeaturesManager._TASKS_TO_AUTOMODELS | |
else: | |
task_to_automodel = FeaturesManager._TASKS_TO_TF_AUTOMODELS | |
if task not in task_to_automodel: | |
raise KeyError( | |
f"Unknown task: {feature}. Possible values are {list(FeaturesManager._TASKS_TO_AUTOMODELS.values())}" | |
) | |
return task_to_automodel[task] | |
def determine_framework(model: str, framework: str = None) -> str: | |
""" | |
Determines the framework to use for the export. | |
The priority is in the following order: | |
1. User input via `framework`. | |
2. If local checkpoint is provided, use the same framework as the checkpoint. | |
3. Available framework in environment, with priority given to PyTorch | |
Args: | |
model (`str`): | |
The name of the model to export. | |
framework (`str`, *optional*, defaults to `None`): | |
The framework to use for the export. See above for priority if none provided. | |
Returns: | |
The framework to use for the export. | |
""" | |
if framework is not None: | |
return framework | |
framework_map = {"pt": "PyTorch", "tf": "TensorFlow"} | |
exporter_map = {"pt": "torch", "tf": "tf2onnx"} | |
if os.path.isdir(model): | |
if os.path.isfile(os.path.join(model, WEIGHTS_NAME)): | |
framework = "pt" | |
elif os.path.isfile(os.path.join(model, TF2_WEIGHTS_NAME)): | |
framework = "tf" | |
else: | |
raise FileNotFoundError( | |
"Cannot determine framework from given checkpoint location." | |
f" There should be a {WEIGHTS_NAME} for PyTorch" | |
f" or {TF2_WEIGHTS_NAME} for TensorFlow." | |
) | |
logger.info(f"Local {framework_map[framework]} model found.") | |
else: | |
if is_torch_available(): | |
framework = "pt" | |
elif is_tf_available(): | |
framework = "tf" | |
else: | |
raise EnvironmentError("Neither PyTorch nor TensorFlow found in environment. Cannot export to ONNX.") | |
logger.info(f"Framework not requested. Using {exporter_map[framework]} to export to ONNX.") | |
return framework | |
def get_model_from_feature( | |
feature: str, model: str, framework: str = None, cache_dir: str = None | |
) -> Union["PreTrainedModel", "TFPreTrainedModel"]: | |
""" | |
Attempts to retrieve a model from a model's name and the feature to be enabled. | |
Args: | |
feature (`str`): | |
The feature required. | |
model (`str`): | |
The name of the model to export. | |
framework (`str`, *optional*, defaults to `None`): | |
The framework to use for the export. See `FeaturesManager.determine_framework` for the priority should | |
none be provided. | |
Returns: | |
The instance of the model. | |
""" | |
framework = FeaturesManager.determine_framework(model, framework) | |
model_class = FeaturesManager.get_model_class_for_feature(feature, framework) | |
try: | |
model = model_class.from_pretrained(model, cache_dir=cache_dir) | |
except OSError: | |
if framework == "pt": | |
logger.info("Loading TensorFlow model in PyTorch before exporting to ONNX.") | |
model = model_class.from_pretrained(model, from_tf=True, cache_dir=cache_dir) | |
else: | |
logger.info("Loading PyTorch model in TensorFlow before exporting to ONNX.") | |
model = model_class.from_pretrained(model, from_pt=True, cache_dir=cache_dir) | |
return model | |
def check_supported_model_or_raise( | |
model: Union["PreTrainedModel", "TFPreTrainedModel"], feature: str = "default" | |
) -> Tuple[str, Callable]: | |
""" | |
Check whether or not the model has the requested features. | |
Args: | |
model: The model to export. | |
feature: The name of the feature to check if it is available. | |
Returns: | |
(str) The type of the model (OnnxConfig) The OnnxConfig instance holding the model export properties. | |
""" | |
model_type = model.config.model_type.replace("_", "-") | |
model_name = getattr(model, "name", "") | |
model_features = FeaturesManager.get_supported_features_for_model_type(model_type, model_name=model_name) | |
if feature not in model_features: | |
raise ValueError( | |
f"{model.config.model_type} doesn't support feature {feature}. Supported values are: {model_features}" | |
) | |
return model.config.model_type, FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature] | |
def get_config(model_type: str, feature: str) -> OnnxConfig: | |
""" | |
Gets the OnnxConfig for a model_type and feature combination. | |
Args: | |
model_type (`str`): | |
The model type to retrieve the config for. | |
feature (`str`): | |
The feature to retrieve the config for. | |
Returns: | |
`OnnxConfig`: config for the combination | |
""" | |
return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature] | |