Spaces:
Running
on
T4
Running
on
T4
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from .agents import BASE_PYTHON_TOOLS, clean_code_for_chat, clean_code_for_run | |
from .python_interpreter import InterpretorError, evaluate | |
### Fake tools for test | |
def classifier(text, labels): | |
return f"This is the classification of {text} along {labels}." | |
def translator(text, src_lang, tgt_lang): | |
return f"This is the translation of {text} from {src_lang} to {tgt_lang}." | |
def speaker(text): | |
return f"This is actually a sound reading {text}." | |
def transcriber(audio): | |
if "sound" not in audio: | |
raise ValueError(f"`audio` ({audio}) is not a sound.") | |
return f"This is the transcribed text from {audio}." | |
def image_generator(prompt): | |
return f"This is actually an image representing {prompt}." | |
def image_captioner(image): | |
if "image" not in image: | |
raise ValueError(f"`image` ({image}) is not an image.") | |
return f"This is a description of {image}." | |
def image_transformer(image, prompt): | |
if "image" not in image: | |
raise ValueError(f"`image` ({image}) is not an image.") | |
return f"This is a transformation of {image} according to {prompt}." | |
def question_answerer(text, question): | |
return f"This is the answer to {question} from {text}." | |
def image_qa(image, question): | |
if "image" not in image: | |
raise ValueError(f"`image` ({image}) is not an image.") | |
return f"This is the answer to {question} from {image}." | |
def text_downloader(url): | |
return f"This is the content of {url}." | |
def summarizer(text): | |
return f"This is a summary of {text}." | |
def video_generator(prompt, seconds=2): | |
return f"A video of {prompt}" | |
def document_qa(image, question): | |
return f"This is the answer to {question} from the document {image}." | |
def image_segmenter(image, prompt): | |
return f"This is the mask of {prompt} in {image}" | |
TEST_TOOLS = { | |
"text_classifier": classifier, | |
"translator": translator, | |
"text_reader": speaker, | |
"summarizer": summarizer, | |
"transcriber": transcriber, | |
"image_generator": image_generator, | |
"image_captioner": image_captioner, | |
"image_transformer": image_transformer, | |
"text_qa": question_answerer, | |
"text_downloader": text_downloader, | |
"image_qa": image_qa, | |
"video_generator": video_generator, | |
"document_qa": document_qa, | |
"image_segmenter": image_segmenter, | |
} | |
class Problem: | |
""" | |
A class regrouping all the information to solve a problem on which we will evaluate agents. | |
Args: | |
task (`str` ou `list[str]`): | |
One or several descriptions of the task to perform. If a list, it should contain variations on the | |
phrasing, but for the same task. | |
inputs (`list[str]` or `dict[str, str]`): | |
The inputs that will be fed to the tools. For this testing environment, only strings are accepted as | |
values. Pass along a dictionary when you want to specify the values of each inputs, or just the list of | |
inputs expected (the value used will be `<<input_name>>` in this case). | |
answer (`str` or `list[str`]): | |
The theoretical answer (or list of possible valid answers) to the problem, as code. | |
""" | |
def __init__(self, task, inputs, answer): | |
self.task = task | |
self.inputs = inputs | |
self.answer = answer | |
### The list of problems the agent will be evaluated on. | |
EVALUATION_TASKS = [ | |
Problem( | |
task=[ | |
"Is the following `text` (in Spanish) positive or negative?", | |
"Is the text in the variable `text` (in Spanish) positive or negative?", | |
"Translate the following `text` from Spanish to English then tell me if its positive or negative.", | |
], | |
inputs=["text"], | |
answer="""text_classifier(translator(text, src_lang="Spanish", tgt_lang="English"), labels=["positive", "negative"])""", | |
), | |
Problem( | |
task=[ | |
"Tell me out loud what the `image` contains.", | |
"Describe the following `image` out loud.", | |
"Find what is in the picture stored in `image` then read it out loud.", | |
], | |
inputs=["image"], | |
answer=[ | |
"text_reader(image_captioner(image))", | |
"text_reader(image_qa(image, question='What is in the image?'))", | |
], | |
), | |
Problem( | |
task=[ | |
"Generate an image from the text given in `text_input`. Then transform it according to the text in `prompt`.", | |
"Use the following `text_input` to generate an image, then transform it by using the text in `prompt`.", | |
], | |
inputs=["text_input", "prompt"], | |
answer="image_transformer(image_generator(text_input), prompt)", | |
), | |
Problem( | |
task=[ | |
"Download the content of `url`, summarize it then generate an image from its content.", | |
"Use a summary of the web page at `url` to generate an image.", | |
"Summarize the content of the web page at `url`, and use the result to generate an image.", | |
], | |
inputs=["url"], | |
answer="image_generator(summarizer(text_downloader(url)))", | |
), | |
Problem( | |
task=[ | |
"Transform the following `image` using the prompt in `text`. The prompt is in Spanish.", | |
"Use the text prompt in `text` (in Spanish) to transform the following `image`.", | |
"Translate the `text` from Spanish to English then use it to transform the picture in `image`.", | |
], | |
inputs=["text", "image"], | |
answer="image_transformer(image, translator(text, src_lang='Spanish', tgt_lang='English'))", | |
), | |
Problem( | |
task=[ | |
"Download the content of `url`, summarize it then read it out loud to me.", | |
"Read me a summary of the web page at `url`.", | |
], | |
inputs=["url"], | |
answer="text_reader(summarizer(text_downloader(url)))", | |
), | |
Problem( | |
task=[ | |
"Generate an image from the text given in `text_input`.", | |
], | |
inputs=["text_input"], | |
answer="image_generator(text_input)", | |
), | |
Problem( | |
task=[ | |
"Replace the beaver in the `image` by the `prompt`.", | |
"Transform the `image` so that it contains the `prompt`.", | |
"Use `prompt` to transform this `image`.", | |
], | |
inputs=["image", "prompt"], | |
answer="image_transformer(image, prompt)", | |
), | |
Problem( | |
task=[ | |
"Provide me the summary of the `text`, then read it to me before transcribing it and translating it in French.", | |
"Summarize `text`, read it out loud then transcribe the audio and translate it in French.", | |
"Read me a summary of the the `text` out loud. Transcribe this and translate it in French.", | |
], | |
inputs=["text"], | |
answer="translator(transcriber(text_reader(summarizer(text))), src_lang='English', tgt_lang='French')", | |
), | |
Problem( | |
task=["Generate a video of the `prompt`", "Animate a `prompt`", "Make me a short video using `prompt`."], | |
inputs={"prompt": "A lobster swimming"}, | |
answer="video_generator('A lobster swimming')", | |
), | |
Problem( | |
task=[ | |
"Download the following file `url`, summarize it in a few words and generate a video from it." | |
"Fetch the file at this `url`, summarize it, and create an animation out of it." | |
], | |
inputs=["url"], | |
answer="video_generator(summarizer(text_downloader(url)))", | |
), | |
] | |
EVALUATION_CHATS = [ | |
[ | |
Problem( | |
task=[ | |
"Translate the following `text` from Spanish to English.", | |
"Translate the following `text` from Spanish to English.", | |
], | |
inputs=["text"], | |
answer="translated_text=translator(text, src_lang='Spanish', tgt_lang='English')", | |
), | |
Problem( | |
task=[ | |
"Is it positive or negative?", | |
"Tell me if its positive or negative.", | |
], | |
inputs=[], | |
answer="text_classifier(translated_text, labels=['positive', 'negative'])", | |
), | |
], | |
[ | |
Problem( | |
task=[ | |
"What does this `image` contain?", | |
"Describe the following `image`.", | |
"Find what is in the picture stored in `image`", | |
], | |
inputs=["image"], | |
answer=[ | |
"description=image_captioner(image)", | |
"description=image_qa(image, question='What is in the image?')", | |
], | |
), | |
Problem( | |
task=["Now, read the description out loud.", "Great! Can you read it out loud?", "Read it out loud."], | |
inputs=[], | |
answer=["audio=text_reader(description)", "audio=text_reader(description)"], | |
), | |
], | |
[ | |
Problem( | |
task=[ | |
"Generate an image from the text given in `text_input`.", | |
"Use the following `text_input` to generate an image", | |
], | |
inputs=["text_input"], | |
answer="image = image_generator(text_input)", | |
), | |
Problem( | |
task=[ | |
"Transform it according to the text in `prompt`.", | |
"Transform it by using the text in `prompt`.", | |
], | |
inputs=["prompt"], | |
answer="image_transformer(image, prompt)", | |
), | |
], | |
[ | |
Problem( | |
task=[ | |
"Download the content of `url` and summarize it.", | |
"Summarize the content of the web page at `url`.", | |
], | |
inputs=["url"], | |
answer="summary = summarizer(text_downloader(url))", | |
), | |
Problem( | |
task=[ | |
"Generate an image from its content.", | |
"Use the previous result to generate an image.", | |
], | |
inputs=[], | |
answer="image_generator(summary)", | |
), | |
], | |
[ | |
Problem( | |
task=[ | |
"Translate this Spanish `text` in English.", | |
"Translate the `text` from Spanish to English.", | |
], | |
inputs=["text"], | |
answer="translated_text = translator(text, src_lang='Spanish', tgt_lang='English')", | |
), | |
Problem( | |
task=[ | |
"Transform the following `image` using the translated `text`.", | |
"Use the previous result to transform the following `image`.", | |
], | |
inputs=["image"], | |
answer="image_transformer(image, translated_text)", | |
), | |
], | |
[ | |
Problem( | |
task=["Download the content of `url`.", "Get me the text on the weg page `url`."], | |
inputs=["url"], | |
answer="text = text_downloader(url)", | |
), | |
Problem( | |
task=["Summarize this text.", "Summarize this text."], | |
inputs=[], | |
answer="summary = summarizer(text)", | |
), | |
Problem( | |
task=["Read it out loud to me.", "Read me the previous result."], | |
inputs=[], | |
answer="text_reader(summary)", | |
), | |
], | |
[ | |
Problem( | |
task=[ | |
"Generate an image from the text given in `text_input`.", | |
], | |
inputs=["text_input"], | |
answer="image_generator(text_input)", | |
), | |
], | |
[ | |
Problem( | |
task=[ | |
"Replace the beaver in the `image` by the `prompt`.", | |
"Transform the `image` so that it contains the `prompt`.", | |
"Use `prompt` to transform this `image`.", | |
], | |
inputs=["image", "prompt"], | |
answer="image_transformer(image, prompt)", | |
), | |
], | |
[ | |
Problem( | |
task=["Provide me the summary of the `text`.", "Summarize `text`."], | |
inputs=["text"], | |
answer="summary = summarizer(text)", | |
), | |
Problem( | |
task=["Read this summary to me.", "Read it out loud."], | |
inputs=[], | |
answer="audio = text_reader(summarizer(text))", | |
), | |
Problem( | |
task=["Transcribing the previous result back in text.", "Transcribe the audio."], | |
inputs=[], | |
answer="text = transcriber(audio)", | |
), | |
Problem( | |
task=["Translating the last result in French.", "Translate this in French."], | |
inputs=[], | |
answer="translator(text, src_lang='English', tgt_lang='French')", | |
), | |
], | |
[ | |
Problem( | |
task=["Generate a video of the `prompt`", "Animate a `prompt`", "Make me a short video using `prompt`."], | |
inputs={"prompt": "A lobster swimming"}, | |
answer="video_generator('A lobster swimming')", | |
), | |
], | |
[ | |
Problem( | |
task=[ | |
"Download the content of `url` and summarize it.", | |
"Summarize the content of the web page at `url`.", | |
], | |
inputs=["url"], | |
answer="summary = summarizer(text_downloader(url))", | |
), | |
Problem( | |
task=["generate a video from it.", "Create an animation from the last result."], | |
inputs=[], | |
answer="video_generator(summary)", | |
), | |
], | |
] | |
def get_theoretical_tools(agent_answer, theoretical_answer, code_answer): | |
if not isinstance(theoretical_answer, list): | |
return {name for name in TEST_TOOLS if name in code_answer} | |
if isinstance(agent_answer, dict): | |
for one_answer, one_code in zip(theoretical_answer, code_answer): | |
if one_answer in agent_answer.values(): | |
return {name for name in TEST_TOOLS if name in one_code} | |
for one_answer, one_code in zip(theoretical_answer, code_answer): | |
if agent_answer == one_answer: | |
return {name for name in TEST_TOOLS if name in one_code} | |
return {name for name in TEST_TOOLS if name in code_answer[0]} | |
def evaluate_code(code, inputs=None, state=None, verbose=False, return_interpretor_error=False): | |
tools = BASE_PYTHON_TOOLS.copy() | |
for name, tool in TEST_TOOLS.items(): | |
if name not in code: | |
continue | |
tools[name] = tool | |
if isinstance(inputs, dict): | |
inputs = inputs.copy() | |
elif inputs is not None: | |
inputs = {inp: f"<<{inp}>>" for inp in inputs} | |
if state is not None: | |
state.update(inputs) | |
else: | |
state = inputs | |
try: | |
return evaluate(code, tools, state) | |
except InterpretorError as e: | |
return str(e) | |
except Exception as e: | |
if verbose: | |
print(e) | |
return None | |
def score_code(agent_answer, theoretical_answer, verbose: bool = False): | |
if verbose: | |
print(agent_answer, theoretical_answer) | |
theoretical_answer = theoretical_answer if isinstance(theoretical_answer, list) else [theoretical_answer] | |
if agent_answer in theoretical_answer: | |
if verbose: | |
print("Perfect!") | |
return 1 | |
elif isinstance(agent_answer, dict) and any(v in theoretical_answer for v in agent_answer.values()): | |
if verbose: | |
print("Almsot perfect, result in state!") | |
return 0.75 | |
else: | |
if verbose: | |
print("Result is not the right one but code executed.") | |
return 0.3 | |
def evaluate_one_result(explanation, code, agent_answer, theoretical_answer, answer, verbose=False): | |
tools_in_explanation = {name for name in TEST_TOOLS if f"`{name}`" in explanation} | |
theoretical_tools = get_theoretical_tools(agent_answer, theoretical_answer, answer) | |
if tools_in_explanation == theoretical_tools: | |
tool_selection_score = 1.0 | |
tool_selection_errors = None | |
else: | |
missing_tools = len(theoretical_tools - tools_in_explanation) | |
unexpected_tools = len(tools_in_explanation - theoretical_tools) | |
tool_selection_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools) | |
tool_selection_errors = { | |
"selected_tools": tools_in_explanation, | |
"theoretical_tools": theoretical_tools, | |
} | |
tools_in_code = {name for name in TEST_TOOLS if name in code} | |
if tools_in_code == theoretical_tools: | |
tool_used_score = 1.0 | |
tool_used_errors = None | |
else: | |
missing_tools = len(theoretical_tools - tools_in_code) | |
unexpected_tools = len(tools_in_code - theoretical_tools) | |
tool_used_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools) | |
tool_used_errors = { | |
"selected_tools": tools_in_explanation, | |
"theoretical_tools": theoretical_tools, | |
} | |
score = score_code(agent_answer, theoretical_answer, verbose=verbose) | |
if score < 1.0: | |
code_errors = { | |
"code_produced": code, | |
"evaluation": agent_answer, | |
"theoretical_answer": theoretical_answer, | |
} | |
else: | |
code_errors = None | |
return (tool_selection_score, tool_used_score, score), (tool_selection_errors, tool_used_errors, code_errors) | |
def evaluate_agent(agent, batch_size=8, verbose=False, return_errors=False): | |
""" | |
Evaluates a new agent on all `EVALUATION_TASKS`. | |
Example: | |
```py | |
agent = NewOpenAiAgent(model="text-davinci-003", api_key=your_api_key) | |
bads = new_evaluate_agent(agent) | |
for bad in bads: | |
print(bad) | |
``` | |
""" | |
# Sanity check | |
agent_tools = set(agent.toolbox.keys()) | |
if agent_tools != set(TEST_TOOLS): | |
missing_tools = set(TEST_TOOLS) - agent_tools | |
unexpected_tools = set(agent_tools) - TEST_TOOLS | |
raise ValueError( | |
f"Fix the test tools in the evaluate_agent module. Tools mising: {missing_tools}. Extra tools: {unexpected_tools}." | |
) | |
eval_tasks = [] | |
eval_idx = [] | |
for idx, pb in enumerate(EVALUATION_TASKS): | |
if isinstance(pb.task, list): | |
eval_tasks.extend(pb.task) | |
eval_idx.extend([idx] * len(pb.task)) | |
else: | |
eval_tasks.append(pb.task) | |
eval_idx.append(idx) | |
tool_selection_score = 0 | |
tool_used_score = 0 | |
code_score = 0 | |
if return_errors: | |
tool_selection_errors = {} | |
tool_used_errors = {} | |
code_errors = {} | |
for start_idx in range(0, len(eval_tasks), batch_size): | |
end_idx = min(start_idx + batch_size, len(eval_tasks)) | |
batch_tasks = eval_tasks[start_idx:end_idx] | |
prompts = [agent.format_prompt(task) for task in batch_tasks] | |
results = agent.generate_many(prompts, stop=["Task:"]) | |
for idx, result in enumerate(results): | |
problem = EVALUATION_TASKS[eval_idx[start_idx + idx]] | |
if verbose: | |
print(f"====Task {start_idx + idx}====\n{batch_tasks[idx]}\n") | |
explanation, code = clean_code_for_run(result) | |
# Evaluate agent answer and code answer | |
agent_answer = evaluate_code(code, problem.inputs, verbose=verbose) | |
if isinstance(problem.answer, list): | |
theoretical_answer = [evaluate_code(answer, problem.inputs) for answer in problem.answer] | |
else: | |
theoretical_answer = evaluate_code(problem.answer, problem.inputs) | |
scores, errors = evaluate_one_result( | |
explanation, code, agent_answer, theoretical_answer, problem.answer, verbose=verbose | |
) | |
tool_selection_score += scores[0] | |
tool_used_score += scores[1] | |
code_score += scores[2] | |
if return_errors: | |
if errors[0] is not None: | |
tool_selection_errors[batch_tasks[idx]] = errors[0] | |
if errors[1] is not None: | |
tool_used_errors[batch_tasks[idx]] = errors[1] | |
if errors[2] is not None: | |
code_errors[batch_tasks[idx]] = errors[2] | |
scores = { | |
"tool selection score": 100 * (tool_selection_score / len(eval_tasks)), | |
"tool used score": 100 * (tool_used_score / len(eval_tasks)), | |
"code score": 100 * (code_score / len(eval_tasks)), | |
} | |
if return_errors: | |
return scores, tool_selection_errors, tool_used_errors, code_errors | |
else: | |
return scores | |
def evaluate_chat_agent(agent, verbose=False, return_errors=False): | |
""" | |
Evaluates a new agent on all `EVALUATION_CHATS`. | |
Example: | |
```py | |
agent = NewOpenAiAgent(model="text-davinci-003", api_key=your_api_key) | |
bads = new_evaluate_agent(agent) | |
for bad in bads: | |
print(bad) | |
``` | |
""" | |
# Sanity check | |
agent_tools = set(agent.toolbox.keys()) | |
if agent_tools != set(TEST_TOOLS): | |
missing_tools = set(TEST_TOOLS) - agent_tools | |
unexpected_tools = agent_tools - set(TEST_TOOLS) | |
raise ValueError( | |
f"Fix the test tools in the evaluate_agent module. Tools mising: {missing_tools}. Extra tools: {unexpected_tools}." | |
) | |
tool_selection_score = 0 | |
tool_used_score = 0 | |
code_score = 0 | |
total_steps = 0 | |
if return_errors: | |
tool_selection_errors = {} | |
tool_used_errors = {} | |
code_errors = {} | |
for chat_problem in EVALUATION_CHATS: | |
if isinstance(chat_problem[0].task, str): | |
resolved_problems = [chat_problem] | |
else: | |
resolved_problems = [ | |
[Problem(task=pb.task[i], inputs=pb.inputs, answer=pb.answer) for pb in chat_problem] | |
for i in range(len(chat_problem[0].task)) | |
] | |
for problem in resolved_problems: | |
agent.prepare_for_new_chat() | |
agent_state = {} | |
theoretical_state = ( | |
[{} for _ in range(len(problem[0].answer))] if isinstance(problem[0].answer, list) else {} | |
) | |
for step, step_problem in enumerate(problem): | |
if verbose: | |
print(step_problem.task) | |
total_steps += 1 | |
prompt = agent.format_prompt(step_problem.task, chat_mode=True) | |
result = agent.generate_one(prompt, stop=["Human:", "====="]) | |
agent.chat_history = prompt + result + "\n" | |
explanation, code = clean_code_for_chat(result) | |
if verbose: | |
print(f"==Explanation from the agent==\n{explanation}") | |
print(f"\n==Code generated by the agent==\n{code}") | |
# Evaluate agent answer and code answer | |
agent_answer = evaluate_code(code, step_problem.inputs, state=agent_state, verbose=verbose) | |
answer = step_problem.answer | |
if isinstance(answer, list): | |
theoretical_answer = [ | |
evaluate_code(a, step_problem.inputs, state=state) | |
for a, state in zip(answer, theoretical_state) | |
] | |
else: | |
theoretical_answer = evaluate_code(answer, step_problem.inputs, state=theoretical_state) | |
scores, errors = evaluate_one_result( | |
explanation, code, agent_answer, theoretical_answer, answer, verbose=verbose | |
) | |
tool_selection_score += scores[0] | |
tool_used_score += scores[1] | |
code_score += scores[2] | |
if return_errors: | |
if errors[0] is not None: | |
tool_selection_errors[step_problem.task] = errors[0] | |
if errors[1] is not None: | |
tool_used_errors[step_problem.task] = errors[1] | |
if errors[2] is not None: | |
code_errors[step_problem.task] = errors[2] | |
scores = { | |
"tool selection score": 100 * (tool_selection_score / total_steps), | |
"tool used score": 100 * (tool_used_score / total_steps), | |
"code score": 100 * (code_score / total_steps), | |
} | |
if return_errors: | |
return scores, tool_selection_errors, tool_used_errors, code_errors | |
else: | |
return scores | |