liuyizhang
commited on
Commit
•
bd50af0
1
Parent(s):
0cc37e5
add kosmos-2
Browse files- app.py +104 -26
- kosmos_utils.py +233 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -3,7 +3,8 @@ import warnings
|
|
3 |
warnings.filterwarnings('ignore')
|
4 |
|
5 |
import subprocess, io, os, sys, time
|
6 |
-
os.system("pip install gradio==3.36.1")
|
|
|
7 |
import gradio as gr
|
8 |
|
9 |
from loguru import logger
|
@@ -50,7 +51,7 @@ from io import BytesIO
|
|
50 |
from diffusers import StableDiffusionInpaintPipeline
|
51 |
from huggingface_hub import hf_hub_download
|
52 |
|
53 |
-
from
|
54 |
# relate anything
|
55 |
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
|
56 |
from ram_train_eval import RamModel,RamPredictor
|
@@ -61,6 +62,10 @@ from lama_cleaner.helper import (
|
|
61 |
resize_max_size,
|
62 |
)
|
63 |
|
|
|
|
|
|
|
|
|
64 |
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
65 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
66 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
@@ -81,6 +86,8 @@ sd_model = None
|
|
81 |
lama_cleaner_model= None
|
82 |
lama_cleaner_model_device = device
|
83 |
ram_model = None
|
|
|
|
|
84 |
|
85 |
def get_sam_vit_h_4b8939():
|
86 |
if not os.path.exists('./sam_vit_h_4b8939.pth'):
|
@@ -254,6 +261,7 @@ def set_device():
|
|
254 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
255 |
else:
|
256 |
device = 'cpu'
|
|
|
257 |
|
258 |
def load_groundingdino_model():
|
259 |
# initialize groundingdino model
|
@@ -366,6 +374,8 @@ class Ram_Predictor(RamPredictor):
|
|
366 |
def load_ram_model():
|
367 |
# load ram model
|
368 |
global ram_model
|
|
|
|
|
369 |
model_path = "./checkpoints/ram_epoch12.pth"
|
370 |
ram_config = dict(
|
371 |
model=dict(
|
@@ -510,19 +520,23 @@ mask_source_draw = "draw a mask on input image"
|
|
510 |
mask_source_segment = "type what to detect below"
|
511 |
|
512 |
def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
|
513 |
-
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation, cleaner_size_limit=1080):
|
514 |
-
|
|
|
|
|
|
|
|
|
515 |
if (task_type == 'relate anything'):
|
516 |
output_images = relate_anything(input_image['image'], num_relation)
|
517 |
-
return output_images, gr.Gallery.update(label='relate images')
|
518 |
|
519 |
text_prompt = text_prompt.strip()
|
520 |
if not ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw):
|
521 |
if text_prompt == '':
|
522 |
-
return [], gr.Gallery.update(label='Detection prompt is not found!😂😂😂😂')
|
523 |
|
524 |
if input_image is None:
|
525 |
-
return [], gr.Gallery.update(label='Please upload a image!😂😂😂😂')
|
526 |
|
527 |
file_temp = int(time.time())
|
528 |
logger.info(f'run_anything_task_002/{device}_[{file_temp}]_{task_type}/{inpaint_mode}/[{mask_source_radio}]/{remove_mode}/{remove_mask_extend}_[{text_prompt}]/[{inpaint_prompt}]___1_')
|
@@ -562,7 +576,7 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
562 |
)
|
563 |
if boxes_filt.size(0) == 0:
|
564 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_[{text_prompt}]_1___{groundingdino_device}/[No objects detected, please try others.]_')
|
565 |
-
return [], gr.Gallery.update(label='No objects detected, please try others.😂😂😂😂')
|
566 |
boxes_filt_ori = copy.deepcopy(boxes_filt)
|
567 |
|
568 |
pred_dict = {
|
@@ -613,7 +627,7 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
613 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
|
614 |
if task_type == 'detection' or task_type == 'segment':
|
615 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
616 |
-
return output_images, gr.Gallery.update(label='result images')
|
617 |
elif task_type == 'inpainting' or task_type == 'remove':
|
618 |
if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment:
|
619 |
task_type = 'remove'
|
@@ -678,27 +692,48 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
678 |
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
|
679 |
output_images.append(image_inpainting)
|
680 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
681 |
-
return output_images, gr.Gallery.update(label='result images')
|
682 |
else:
|
683 |
logger.info(f"task_type:{task_type} error!")
|
684 |
logger.info(f'run_anything_task_[{file_temp}]_9_9_')
|
685 |
-
return output_images, gr.Gallery.update(label='result images')
|
686 |
|
687 |
def change_radio_display(task_type, mask_source_radio):
|
688 |
text_prompt_visible = True
|
689 |
inpaint_prompt_visible = False
|
690 |
mask_source_radio_visible = False
|
691 |
num_relation_visible = False
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
if task_type == "
|
699 |
text_prompt_visible = False
|
700 |
-
|
701 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
702 |
|
703 |
def get_model_device(module):
|
704 |
try:
|
@@ -723,12 +758,18 @@ if __name__ == "__main__":
|
|
723 |
print(f'args = {args}')
|
724 |
|
725 |
set_device()
|
726 |
-
|
727 |
load_groundingdino_model()
|
728 |
-
|
|
|
|
|
|
|
729 |
load_sd_model()
|
730 |
load_lama_cleaner_model()
|
731 |
load_ram_model()
|
|
|
|
|
|
|
732 |
|
733 |
if os.environ.get('IS_MY_DEBUG') is None:
|
734 |
os.system("pip list")
|
@@ -744,7 +785,7 @@ if __name__ == "__main__":
|
|
744 |
with gr.Row():
|
745 |
with gr.Column():
|
746 |
input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload")
|
747 |
-
task_type = gr.Radio(["detection", "segment", "inpainting", "remove", "relate anything"], value="detection",
|
748 |
label='Task type', visible=True)
|
749 |
mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment],
|
750 |
value=mask_source_segment, label="Mask from",
|
@@ -752,6 +793,9 @@ if __name__ == "__main__":
|
|
752 |
text_prompt = gr.Textbox(label="Detection Prompt[To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ]", placeholder="Cannot be empty")
|
753 |
inpaint_prompt = gr.Textbox(label="Inpaint Prompt (if this is empty, then remove)", visible=False)
|
754 |
num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1, visible=False)
|
|
|
|
|
|
|
755 |
run_button = gr.Button(label="Run", visible=True)
|
756 |
with gr.Accordion("Advanced options", open=False) as advanced_options:
|
757 |
box_threshold = gr.Slider(
|
@@ -773,16 +817,50 @@ if __name__ == "__main__":
|
|
773 |
with gr.Column():
|
774 |
image_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", visible=True
|
775 |
).style(preview=True, columns=[5], object_fit="scale-down", height="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
776 |
|
777 |
run_button.click(fn=run_anything_task, inputs=[
|
778 |
-
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
|
|
|
|
|
779 |
|
780 |
-
mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio],
|
781 |
-
|
|
|
|
|
|
|
|
|
782 |
|
783 |
DESCRIPTION = f'### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). <br>'
|
784 |
DESCRIPTION += f'RAM from [RelateAnything](https://github.com/Luodian/RelateAnything). <br>'
|
785 |
DESCRIPTION += f'Remove(cleaner) from [lama-cleaner](https://github.com/Sanster/lama-cleaner). <br>'
|
|
|
786 |
DESCRIPTION += f'Thanks for their excellent work.'
|
787 |
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. \
|
788 |
<a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
|
|
3 |
warnings.filterwarnings('ignore')
|
4 |
|
5 |
import subprocess, io, os, sys, time
|
6 |
+
# os.system("pip install gradio==3.36.1")
|
7 |
+
os.system("pip install gradio==3.41.2")
|
8 |
import gradio as gr
|
9 |
|
10 |
from loguru import logger
|
|
|
51 |
from diffusers import StableDiffusionInpaintPipeline
|
52 |
from huggingface_hub import hf_hub_download
|
53 |
|
54 |
+
from utils import computer_info
|
55 |
# relate anything
|
56 |
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
|
57 |
from ram_train_eval import RamModel,RamPredictor
|
|
|
62 |
resize_max_size,
|
63 |
)
|
64 |
|
65 |
+
# from transformers import AutoProcessor, AutoModelForVision2Seq
|
66 |
+
import ast
|
67 |
+
from kosmos_utils import *
|
68 |
+
|
69 |
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
70 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
71 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
|
|
86 |
lama_cleaner_model= None
|
87 |
lama_cleaner_model_device = device
|
88 |
ram_model = None
|
89 |
+
kosmos_model = None
|
90 |
+
kosmos_processor = None
|
91 |
|
92 |
def get_sam_vit_h_4b8939():
|
93 |
if not os.path.exists('./sam_vit_h_4b8939.pth'):
|
|
|
261 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
262 |
else:
|
263 |
device = 'cpu'
|
264 |
+
print(f'device={device}')
|
265 |
|
266 |
def load_groundingdino_model():
|
267 |
# initialize groundingdino model
|
|
|
374 |
def load_ram_model():
|
375 |
# load ram model
|
376 |
global ram_model
|
377 |
+
if os.environ.get('IS_MY_DEBUG') is not None:
|
378 |
+
return
|
379 |
model_path = "./checkpoints/ram_epoch12.pth"
|
380 |
ram_config = dict(
|
381 |
model=dict(
|
|
|
520 |
mask_source_segment = "type what to detect below"
|
521 |
|
522 |
def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
|
523 |
+
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation, kosmos_input, cleaner_size_limit=1080):
|
524 |
+
if (task_type == 'Kosmos-2'):
|
525 |
+
global kosmos_model, kosmos_processor
|
526 |
+
kosmos_image, kosmos_text, kosmos_entities = kosmos_generate_predictions(input_image, kosmos_input, kosmos_model, kosmos_processor)
|
527 |
+
return None, None, kosmos_image, kosmos_text, kosmos_entities
|
528 |
+
|
529 |
if (task_type == 'relate anything'):
|
530 |
output_images = relate_anything(input_image['image'], num_relation)
|
531 |
+
return output_images, gr.Gallery.update(label='relate images'), None, None, None
|
532 |
|
533 |
text_prompt = text_prompt.strip()
|
534 |
if not ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw):
|
535 |
if text_prompt == '':
|
536 |
+
return [], gr.Gallery.update(label='Detection prompt is not found!😂😂😂😂'), None, None, None
|
537 |
|
538 |
if input_image is None:
|
539 |
+
return [], gr.Gallery.update(label='Please upload a image!😂😂😂😂'), None, None, None
|
540 |
|
541 |
file_temp = int(time.time())
|
542 |
logger.info(f'run_anything_task_002/{device}_[{file_temp}]_{task_type}/{inpaint_mode}/[{mask_source_radio}]/{remove_mode}/{remove_mask_extend}_[{text_prompt}]/[{inpaint_prompt}]___1_')
|
|
|
576 |
)
|
577 |
if boxes_filt.size(0) == 0:
|
578 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_[{text_prompt}]_1___{groundingdino_device}/[No objects detected, please try others.]_')
|
579 |
+
return [], gr.Gallery.update(label='No objects detected, please try others.😂😂😂😂'), None, None, None
|
580 |
boxes_filt_ori = copy.deepcopy(boxes_filt)
|
581 |
|
582 |
pred_dict = {
|
|
|
627 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
|
628 |
if task_type == 'detection' or task_type == 'segment':
|
629 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
630 |
+
return output_images, gr.Gallery.update(label='result images'), None, None, None
|
631 |
elif task_type == 'inpainting' or task_type == 'remove':
|
632 |
if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment:
|
633 |
task_type = 'remove'
|
|
|
692 |
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
|
693 |
output_images.append(image_inpainting)
|
694 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
695 |
+
return output_images, gr.Gallery.update(label='result images'), None, None, None
|
696 |
else:
|
697 |
logger.info(f"task_type:{task_type} error!")
|
698 |
logger.info(f'run_anything_task_[{file_temp}]_9_9_')
|
699 |
+
return output_images, gr.Gallery.update(label='result images'), None, None, None
|
700 |
|
701 |
def change_radio_display(task_type, mask_source_radio):
|
702 |
text_prompt_visible = True
|
703 |
inpaint_prompt_visible = False
|
704 |
mask_source_radio_visible = False
|
705 |
num_relation_visible = False
|
706 |
+
|
707 |
+
image_gallery_visible = True
|
708 |
+
kosmos_input_visible = False
|
709 |
+
kosmos_output_visible = False
|
710 |
+
kosmos_text_output_visible = False
|
711 |
+
|
712 |
+
if task_type == "Kosmos-2":
|
713 |
text_prompt_visible = False
|
714 |
+
image_gallery_visible = False
|
715 |
+
kosmos_input_visible = True
|
716 |
+
kosmos_output_visible = True
|
717 |
+
kosmos_text_output_visible = True
|
718 |
+
else:
|
719 |
+
if task_type == "inpainting":
|
720 |
+
inpaint_prompt_visible = True
|
721 |
+
if task_type == "inpainting" or task_type == "remove":
|
722 |
+
mask_source_radio_visible = True
|
723 |
+
if mask_source_radio == mask_source_draw:
|
724 |
+
text_prompt_visible = False
|
725 |
+
if task_type == "relate anything":
|
726 |
+
text_prompt_visible = False
|
727 |
+
num_relation_visible = True
|
728 |
+
|
729 |
+
return (gr.Textbox.update(visible=text_prompt_visible),
|
730 |
+
gr.Textbox.update(visible=inpaint_prompt_visible),
|
731 |
+
gr.Radio.update(visible=mask_source_radio_visible),
|
732 |
+
gr.Slider.update(visible=num_relation_visible),
|
733 |
+
gr.Gallery.update(visible=image_gallery_visible),
|
734 |
+
gr.Radio.update(visible=kosmos_input_visible),
|
735 |
+
gr.Image.update(visible=kosmos_output_visible),
|
736 |
+
gr.HighlightedText.update(visible=kosmos_text_output_visible))
|
737 |
|
738 |
def get_model_device(module):
|
739 |
try:
|
|
|
758 |
print(f'args = {args}')
|
759 |
|
760 |
set_device()
|
761 |
+
|
762 |
load_groundingdino_model()
|
763 |
+
if os.environ.get('IS_MY_DEBUG') is None:
|
764 |
+
get_sam_vit_h_4b8939()
|
765 |
+
load_sam_model()
|
766 |
+
|
767 |
load_sd_model()
|
768 |
load_lama_cleaner_model()
|
769 |
load_ram_model()
|
770 |
+
|
771 |
+
if os.environ.get('IS_MY_DEBUG') is None:
|
772 |
+
kosmos_model, kosmos_processor = load_kosmos_model(device)
|
773 |
|
774 |
if os.environ.get('IS_MY_DEBUG') is None:
|
775 |
os.system("pip list")
|
|
|
785 |
with gr.Row():
|
786 |
with gr.Column():
|
787 |
input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload")
|
788 |
+
task_type = gr.Radio(["detection", "segment", "inpainting", "remove", "relate anything", "Kosmos-2"], value="detection",
|
789 |
label='Task type', visible=True)
|
790 |
mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment],
|
791 |
value=mask_source_segment, label="Mask from",
|
|
|
793 |
text_prompt = gr.Textbox(label="Detection Prompt[To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ]", placeholder="Cannot be empty")
|
794 |
inpaint_prompt = gr.Textbox(label="Inpaint Prompt (if this is empty, then remove)", visible=False)
|
795 |
num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1, visible=False)
|
796 |
+
|
797 |
+
kosmos_input = gr.Radio(["Brief", "Detailed"], label="Kosmos Description Type", value="Brief", visible=False)
|
798 |
+
|
799 |
run_button = gr.Button(label="Run", visible=True)
|
800 |
with gr.Accordion("Advanced options", open=False) as advanced_options:
|
801 |
box_threshold = gr.Slider(
|
|
|
817 |
with gr.Column():
|
818 |
image_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", visible=True
|
819 |
).style(preview=True, columns=[5], object_fit="scale-down", height="auto")
|
820 |
+
kosmos_output = gr.Image(type="pil", label="result images", visible=False)
|
821 |
+
kosmos_text_output = gr.HighlightedText(
|
822 |
+
label="Generated Description",
|
823 |
+
combine_adjacent=False,
|
824 |
+
show_legend=True,
|
825 |
+
visible=False,
|
826 |
+
).style(color_map=color_map)
|
827 |
+
# record which text span (label) is selected
|
828 |
+
selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False)
|
829 |
+
|
830 |
+
# record the current `entities`
|
831 |
+
entity_output = gr.Textbox(visible=False)
|
832 |
+
|
833 |
+
# get the current selected span label
|
834 |
+
def get_text_span_label(evt: gr.SelectData):
|
835 |
+
if evt.value[-1] is None:
|
836 |
+
return -1
|
837 |
+
return int(evt.value[-1])
|
838 |
+
# and set this information to `selected`
|
839 |
+
kosmos_text_output.select(get_text_span_label, None, selected)
|
840 |
+
|
841 |
+
# update output image when we change the span (enity) selection
|
842 |
+
def update_output_image(img_input, image_output, entities, idx):
|
843 |
+
entities = ast.literal_eval(entities)
|
844 |
+
updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
|
845 |
+
return updated_image
|
846 |
+
selected.change(update_output_image, [kosmos_output, kosmos_output, entity_output, selected], [kosmos_output])
|
847 |
|
848 |
run_button.click(fn=run_anything_task, inputs=[
|
849 |
+
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
|
850 |
+
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation, kosmos_input],
|
851 |
+
outputs=[image_gallery, image_gallery, kosmos_output, kosmos_text_output, entity_output], show_progress=True, queue=True)
|
852 |
|
853 |
+
mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio],
|
854 |
+
outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation])
|
855 |
+
task_type.change(fn=change_radio_display, inputs=[task_type, mask_source_radio],
|
856 |
+
outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation,
|
857 |
+
image_gallery, kosmos_input, kosmos_output, kosmos_text_output
|
858 |
+
])
|
859 |
|
860 |
DESCRIPTION = f'### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). <br>'
|
861 |
DESCRIPTION += f'RAM from [RelateAnything](https://github.com/Luodian/RelateAnything). <br>'
|
862 |
DESCRIPTION += f'Remove(cleaner) from [lama-cleaner](https://github.com/Sanster/lama-cleaner). <br>'
|
863 |
+
DESCRIPTION += f'Kosmos-2 from [RelateAnything](https://huggingface.co/spaces/ydshieh/Kosmos-2). <br>'
|
864 |
DESCRIPTION += f'Thanks for their excellent work.'
|
865 |
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. \
|
866 |
<a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
kosmos_utils.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
import torch
|
6 |
+
import torchvision.transforms as torchvision_T
|
7 |
+
from PIL import Image
|
8 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
9 |
+
import cv2
|
10 |
+
import ast
|
11 |
+
|
12 |
+
colors = [
|
13 |
+
(0, 255, 0),
|
14 |
+
(0, 0, 255),
|
15 |
+
(255, 255, 0),
|
16 |
+
(255, 0, 255),
|
17 |
+
(0, 255, 255),
|
18 |
+
(114, 128, 250),
|
19 |
+
(0, 165, 255),
|
20 |
+
(0, 128, 0),
|
21 |
+
(144, 238, 144),
|
22 |
+
(238, 238, 175),
|
23 |
+
(255, 191, 0),
|
24 |
+
(0, 128, 0),
|
25 |
+
(226, 43, 138),
|
26 |
+
(255, 0, 255),
|
27 |
+
(0, 215, 255),
|
28 |
+
(255, 0, 0),
|
29 |
+
]
|
30 |
+
|
31 |
+
color_map = {
|
32 |
+
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors)
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
def is_overlapping(rect1, rect2):
|
37 |
+
x1, y1, x2, y2 = rect1
|
38 |
+
x3, y3, x4, y4 = rect2
|
39 |
+
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
40 |
+
|
41 |
+
|
42 |
+
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
|
43 |
+
"""_summary_
|
44 |
+
Args:
|
45 |
+
image (_type_): image or image path
|
46 |
+
collect_entity_location (_type_): _description_
|
47 |
+
"""
|
48 |
+
if isinstance(image, Image.Image):
|
49 |
+
image_h = image.height
|
50 |
+
image_w = image.width
|
51 |
+
image = np.array(image)[:, :, [2, 1, 0]]
|
52 |
+
elif isinstance(image, str):
|
53 |
+
if os.path.exists(image):
|
54 |
+
pil_img = Image.open(image).convert("RGB")
|
55 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
56 |
+
image_h = pil_img.height
|
57 |
+
image_w = pil_img.width
|
58 |
+
else:
|
59 |
+
raise ValueError(f"invaild image path, {image}")
|
60 |
+
elif isinstance(image, torch.Tensor):
|
61 |
+
# pdb.set_trace()
|
62 |
+
image_tensor = image.cpu()
|
63 |
+
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
|
64 |
+
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
|
65 |
+
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
|
66 |
+
pil_img = torchvision_T.ToPILImage()(image_tensor)
|
67 |
+
image_h = pil_img.height
|
68 |
+
image_w = pil_img.width
|
69 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
70 |
+
else:
|
71 |
+
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
72 |
+
|
73 |
+
if len(entities) == 0:
|
74 |
+
return image
|
75 |
+
|
76 |
+
indices = list(range(len(entities)))
|
77 |
+
if entity_index >= 0:
|
78 |
+
indices = [entity_index]
|
79 |
+
|
80 |
+
# Not to show too many bboxes
|
81 |
+
entities = entities[:len(color_map)]
|
82 |
+
|
83 |
+
new_image = image.copy()
|
84 |
+
previous_bboxes = []
|
85 |
+
# size of text
|
86 |
+
text_size = 1
|
87 |
+
# thickness of text
|
88 |
+
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
|
89 |
+
box_line = 3
|
90 |
+
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
91 |
+
base_height = int(text_height * 0.675)
|
92 |
+
text_offset_original = text_height - base_height
|
93 |
+
text_spaces = 3
|
94 |
+
|
95 |
+
# num_bboxes = sum(len(x[-1]) for x in entities)
|
96 |
+
used_colors = colors # random.sample(colors, k=num_bboxes)
|
97 |
+
|
98 |
+
color_id = -1
|
99 |
+
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
|
100 |
+
color_id += 1
|
101 |
+
if entity_idx not in indices:
|
102 |
+
continue
|
103 |
+
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
104 |
+
# if start is None and bbox_id > 0:
|
105 |
+
# color_id += 1
|
106 |
+
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
107 |
+
|
108 |
+
# draw bbox
|
109 |
+
# random color
|
110 |
+
color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
|
111 |
+
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
112 |
+
|
113 |
+
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
114 |
+
|
115 |
+
x1 = orig_x1 - l_o
|
116 |
+
y1 = orig_y1 - l_o
|
117 |
+
|
118 |
+
if y1 < text_height + text_offset_original + 2 * text_spaces:
|
119 |
+
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
|
120 |
+
x1 = orig_x1 + r_o
|
121 |
+
|
122 |
+
# add text background
|
123 |
+
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
124 |
+
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
|
125 |
+
|
126 |
+
for prev_bbox in previous_bboxes:
|
127 |
+
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
|
128 |
+
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
|
129 |
+
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
|
130 |
+
y1 += (text_height + text_offset_original + 2 * text_spaces)
|
131 |
+
|
132 |
+
if text_bg_y2 >= image_h:
|
133 |
+
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
|
134 |
+
text_bg_y2 = image_h
|
135 |
+
y1 = image_h
|
136 |
+
break
|
137 |
+
|
138 |
+
alpha = 0.5
|
139 |
+
for i in range(text_bg_y1, text_bg_y2):
|
140 |
+
for j in range(text_bg_x1, text_bg_x2):
|
141 |
+
if i < image_h and j < image_w:
|
142 |
+
if j < text_bg_x1 + 1.35 * c_width:
|
143 |
+
# original color
|
144 |
+
bg_color = color
|
145 |
+
else:
|
146 |
+
# white
|
147 |
+
bg_color = [255, 255, 255]
|
148 |
+
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
|
149 |
+
|
150 |
+
cv2.putText(
|
151 |
+
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
|
152 |
+
)
|
153 |
+
# previous_locations.append((x1, y1))
|
154 |
+
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
|
155 |
+
|
156 |
+
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
|
157 |
+
if save_path:
|
158 |
+
pil_image.save(save_path)
|
159 |
+
if show:
|
160 |
+
pil_image.show()
|
161 |
+
|
162 |
+
return pil_image
|
163 |
+
|
164 |
+
def load_kosmos_model(device):
|
165 |
+
ckpt = "ydshieh/kosmos-2-patch14-224"
|
166 |
+
kosmos_model = AutoModelForVision2Seq.from_pretrained(ckpt, trust_remote_code=True).to(device)
|
167 |
+
kosmos_processor = AutoProcessor.from_pretrained(ckpt, trust_remote_code=True)
|
168 |
+
return kosmos_model, kosmos_processor
|
169 |
+
|
170 |
+
def kosmos_generate_predictions(image_input, text_input, kosmos_model, kosmos_processor):
|
171 |
+
if kosmos_model is None:
|
172 |
+
return None, None, None
|
173 |
+
|
174 |
+
# Save the image and load it again to match the original Kosmos-2 demo.
|
175 |
+
# (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
|
176 |
+
user_image_path = "/tmp/user_input_test_image.jpg"
|
177 |
+
image_input.save(user_image_path)
|
178 |
+
# This might give different results from the original argument `image_input`
|
179 |
+
image_input = Image.open(user_image_path)
|
180 |
+
|
181 |
+
if text_input == "Brief":
|
182 |
+
text_input = "<grounding>An image of"
|
183 |
+
elif text_input == "Detailed":
|
184 |
+
text_input = "<grounding>Describe this image in detail:"
|
185 |
+
else:
|
186 |
+
text_input = f"<grounding>{text_input}"
|
187 |
+
|
188 |
+
inputs = kosmos_processor(text=text_input, images=image_input, return_tensors="pt")
|
189 |
+
|
190 |
+
generated_ids = kosmos_model.generate(
|
191 |
+
pixel_values=inputs["pixel_values"].to("cuda"),
|
192 |
+
input_ids=inputs["input_ids"][:, :-1].to("cuda"),
|
193 |
+
attention_mask=inputs["attention_mask"][:, :-1].to("cuda"),
|
194 |
+
img_features=None,
|
195 |
+
img_attn_mask=inputs["img_attn_mask"][:, :-1].to("cuda"),
|
196 |
+
use_cache=True,
|
197 |
+
max_new_tokens=128,
|
198 |
+
)
|
199 |
+
generated_text = kosmos_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
200 |
+
|
201 |
+
# By default, the generated text is cleanup and the entities are extracted.
|
202 |
+
processed_text, entities = kosmos_processor.post_process_generation(generated_text)
|
203 |
+
|
204 |
+
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False)
|
205 |
+
|
206 |
+
color_id = -1
|
207 |
+
entity_info = []
|
208 |
+
filtered_entities = []
|
209 |
+
for entity in entities:
|
210 |
+
entity_name, (start, end), bboxes = entity
|
211 |
+
if start == end:
|
212 |
+
# skip bounding bbox without a `phrase` associated
|
213 |
+
continue
|
214 |
+
color_id += 1
|
215 |
+
# for bbox_id, _ in enumerate(bboxes):
|
216 |
+
# if start is None and bbox_id > 0:
|
217 |
+
# color_id += 1
|
218 |
+
entity_info.append(((start, end), color_id))
|
219 |
+
filtered_entities.append(entity)
|
220 |
+
|
221 |
+
colored_text = []
|
222 |
+
prev_start = 0
|
223 |
+
end = 0
|
224 |
+
for idx, ((start, end), color_id) in enumerate(entity_info):
|
225 |
+
if start > prev_start:
|
226 |
+
colored_text.append((processed_text[prev_start:start], None))
|
227 |
+
colored_text.append((processed_text[start:end], f"{color_id}"))
|
228 |
+
prev_start = end
|
229 |
+
|
230 |
+
if end < len(processed_text):
|
231 |
+
colored_text.append((processed_text[end:len(processed_text)], None))
|
232 |
+
|
233 |
+
return annotated_image, colored_text, str(filtered_entities)
|
requirements.txt
CHANGED
@@ -23,6 +23,7 @@ numba
|
|
23 |
scipy
|
24 |
safetensors
|
25 |
pynvml
|
|
|
26 |
|
27 |
lama-cleaner==1.1.2
|
28 |
openmim==0.1.5
|
|
|
23 |
scipy
|
24 |
safetensors
|
25 |
pynvml
|
26 |
+
sentencepiece
|
27 |
|
28 |
lama-cleaner==1.1.2
|
29 |
openmim==0.1.5
|