File size: 11,865 Bytes
6c85792
 
 
 
 
 
 
 
 
 
 
 
 
 
af53c40
6c85792
a5ca5a6
a18a2d9
a5ca5a6
 
 
 
 
 
a18a2d9
a5ca5a6
 
 
 
 
 
 
 
 
 
 
774d798
 
a5ca5a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
344868a
 
a5ca5a6
 
ec107df
6c85792
8d01019
6c85792
 
 
8d01019
 
 
 
 
 
a5ca5a6
 
 
bb4525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f73b71e
 
 
 
 
 
 
 
8202902
a18a2d9
f73b71e
0e4c0f7
f73b71e
 
 
 
 
 
 
 
 
 
 
 
 
3079cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f73b71e
 
 
 
 
3079cc3
 
f73b71e
3079cc3
 
f73b71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ca5a6
 
 
2976d00
8997d74
 
 
 
a5ca5a6
 
 
60be08d
6c85792
 
 
 
 
 
 
60be08d
6c85792
 
 
 
 
 
 
 
 
1dccaac
bb4525d
856d473
5a166e2
 
 
856d473
f73b71e
 
 
6c85792
 
9251ce3
6c85792
 
 
de5109e
 
6c85792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de5109e
6c85792
 
 
 
de5109e
6c85792
e2718c0
93b8a3e
bb4525d
 
 
e2718c0
6c85792
 
 
 
 
 
e2718c0
6c85792
e2718c0
 
 
f9e0e97
 
9251ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
b31df08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import gradio as gr

from io import BytesIO
import requests
import PIL
from PIL import Image
import numpy as np
import os
import uuid
import torch
from torch import autocast
import cv2
from matplotlib import pyplot as plt
from torchvision import transforms
# from diffusers import DiffusionPipeline

import io
import logging
import multiprocessing
import random
import time
import imghdr
from pathlib import Path
from typing import Union
from loguru import logger

from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config

try:
    torch._C._jit_override_can_fuse_on_cpu(False)
    torch._C._jit_override_can_fuse_on_gpu(False)
    torch._C._jit_set_texpr_fuser_enabled(False)
    torch._C._jit_set_nvfuser_enabled(False)
except:
    pass


from lama_cleaner.helper import (
    load_img,
    numpy_to_bytes,
    resize_max_size,
)

NUM_THREADS = str(multiprocessing.cpu_count())

# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"

os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
    os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]

os.environ["TORCH_HOME"] = './'

BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")

from share_btn import community_icon_html, loading_icon_html, share_js

HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')

device = "cuda" if torch.cuda.is_available() else "cpu"

def get_image_ext(img_bytes):
    w = imghdr.what("", img_bytes)
    if w is None:
        w = "jpeg"
    return w
    
def diffuser_callback(i, t, latents):
    pass

def preprocess_image(image):
    w, h = image.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return 2.0 * image - 1.0

def preprocess_mask(mask):
    mask = mask.convert("L")
    w, h = mask.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
    mask = np.array(mask).astype(np.float32) / 255.0
    mask = np.tile(mask, (4, 1, 1))
    mask = mask[None].transpose(0, 1, 2, 3)  # what does this step do?
    mask = 1 - mask  # repaint white, keep black
    mask = torch.from_numpy(mask)
    return mask
    
def process(init_image, mask):
    global model
    '''
    input = request.files
    # RGB
    origin_image_bytes = input["image"].read()
    '''
    
    print(f'liuyz_2_here_')
    
    # image, alpha_channel = load_img(origin_image_bytes)
    # Origin image shape: (512, 512, 3)
    original_shape = init_image.shape
    interpolation = cv2.INTER_CUBIC
    
    '''
    form = request.form
    '''
    size_limit = 1080 # : Union[int, str] = form.get("sizeLimit", "1080")
    if size_limit == "Original":
        size_limit = max(image.shape)
    else:
        size_limit = int(size_limit)

    config = Config(
        ldm_steps=25,
        ldm_sampler='plms',
        zits_wireframe=True,
        hd_strategy='Original',
        hd_strategy_crop_margin=196,
        hd_strategy_crop_trigger_size=1280,
        hd_strategy_resize_limit=2048,
        prompt='',
        use_croper=False,
        croper_x=0,
        croper_y=0,
        croper_height=512,
        croper_width=512,
        sd_mask_blur=5,
        sd_strength=0.75,
        sd_steps=50,
        sd_guidance_scale=7.5,
        sd_sampler='ddim',
        sd_seed=42,
        cv2_flag='INPAINT_NS',
        cv2_radius=5,
    )

    if config.sd_seed == -1:
        config.sd_seed = random.randint(1, 999999999)

    # logger.info(f"Origin image shape: {original_shape}")
    print(f"Origin image shape: {original_shape}")
    image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
    # logger.info(f"Resized image shape: {image.shape}")
    print(f"Resized image shape: {image.shape}")

    mask, _ = load_img(input["mask"].read(), gray=True)
    mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)

    start = time.time()
    res_np_img = model(image, mask, config)
    logger.info(f"process time: {(time.time() - start) * 1000}ms")

    torch.cuda.empty_cache()

    if alpha_channel is not None:
        if alpha_channel.shape[:2] != res_np_img.shape[:2]:
            alpha_channel = cv2.resize(
                alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
            )
        res_np_img = np.concatenate(
            (res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
        )

    ext = get_image_ext(origin_image_bytes)
    return ext
    '''
    response = make_response(
        send_file(
            io.BytesIO(numpy_to_bytes(res_np_img, ext)),
            mimetype=f"image/{ext}",
        )
    )
    response.headers["X-Seed"] = str(config.sd_seed)
    return response
    '''
    
model = ModelManager(
        name='lama',
        device=device,
        # hf_access_token=HF_TOKEN_SD,
        # sd_disable_nsfw=False,
        # sd_cpu_textencoder=True,
        # sd_run_local=True,
        # callback=diffuser_callback,
    )
    

'''
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float16, revision="fp16", use_auth_token=auth_token).to(device)

transform = transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
      transforms.Resize((512, 512)),
])
'''

def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

def predict(dict, prompt=""):
    print(f'liuyz_0_', dict)
    init_image = dict["image"] # .convert("RGB") #.resize((512, 512))
    print(f'liuyz_1_', init_image)
    print(f'liuyz_2_', init_image.convert("RGB"))
    print(f'liuyz_3_', init_image.convert("RGB").resize((512, 512)))
    mask = dict["mask"] # .convert("RGB") #.resize((512, 512))
    output = process(init_image, mask)
    # output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
    
    return output.images[0], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

print(f'liuyz_400_here_')

css = '''
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {
    display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
    all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
    all: unset;
}
#share-btn-container div:nth-child(-n+2){
    width: auto !important;
    min-height: 0px !important;
}
#share-btn-container .wrap {
    display: none !important;
}
'''

image_blocks = gr.Blocks(css=css)
with image_blocks as demo:
    gr.HTML(read_content("header.html"))
    with gr.Group():
        with gr.Box():
            with gr.Row():
                with gr.Column():
                    image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload").style(height=400)
                    with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                        prompt = gr.Textbox(placeholder = 'Your prompt (what you want in place of what is erased)', show_label=False, elem_id="input-text")
                        btn = gr.Button("Done!").style(
                            margin=True,
                            rounded=(True, True, True, True),
                            full_width=True,
                        )                
                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="output-img").style(height=400)
                    with gr.Group(elem_id="share-btn-container"):
                        community_icon = gr.HTML(community_icon_html, visible=False)
                        loading_icon = gr.HTML(loading_icon_html, visible=False)
                        share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
                

            btn.click(fn=predict, inputs=[image, prompt], outputs=[image_out, community_icon, loading_icon, share_button])
            #btn.click(fn=predict, inputs=[image], outputs=[image]) #, community_icon, loading_icon, share_button])
            share_button.click(None, [], [], _js=share_js)
            
            gr.HTML(
                """
                    <div class="footer">
                        <p>Model by <a href="https://huggingface.co/runwayml" style="text-decoration: underline;" target="_blank">RunwayML</a> - Gradio Demo by 🤗 Hugging Face
                        </p>
                    </div>
                    <div class="acknowledgments">
                        <p><h4>LICENSE</h4>
        The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
                        <p><h4>Biases and content acknowledgment</h4>
        Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
                    </div>
                """
            )
            
image_blocks.launch()