Spaces:
Running
Running
import gradio as gr | |
import PIL | |
from PIL import Image | |
import numpy as np | |
import os | |
import uuid | |
import torch | |
from torch import autocast | |
import cv2 | |
from io import BytesIO | |
import requests | |
import PIL | |
from PIL import Image | |
import numpy as np | |
import os | |
import uuid | |
import torch | |
from torch import autocast | |
import cv2 | |
from matplotlib import pyplot as plt | |
from torchvision import transforms | |
from diffusers import DiffusionPipeline | |
import io | |
import logging | |
import multiprocessing | |
import random | |
import time | |
import imghdr | |
from pathlib import Path | |
from typing import Union | |
from loguru import logger | |
from lama_cleaner.model_manager import ModelManager | |
from lama_cleaner.schema import Config | |
try: | |
torch._C._jit_override_can_fuse_on_cpu(False) | |
torch._C._jit_override_can_fuse_on_gpu(False) | |
torch._C._jit_set_texpr_fuser_enabled(False) | |
torch._C._jit_set_nvfuser_enabled(False) | |
except: | |
pass | |
from lama_cleaner.helper import ( | |
load_img, | |
numpy_to_bytes, | |
resize_max_size, | |
) | |
NUM_THREADS = str(multiprocessing.cpu_count()) | |
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56 | |
os.environ["KMP_DUPLICATE_LIB_OK"] = "True" | |
os.environ["OMP_NUM_THREADS"] = NUM_THREADS | |
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS | |
os.environ["MKL_NUM_THREADS"] = NUM_THREADS | |
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS | |
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS | |
if os.environ.get("CACHE_DIR"): | |
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"] | |
os.environ["TORCH_HOME"] = './' | |
BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build") | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD') | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f'device = {device}') | |
def get_image_ext(img_bytes): | |
w = imghdr.what("", img_bytes) | |
if w is None: | |
w = "jpeg" | |
return w | |
def diffuser_callback(i, t, latents): | |
pass | |
def preprocess_image(image): | |
w, h = image.size | |
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 | |
image = image.resize((w, h), resample=PIL.Image.LANCZOS) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return 2.0 * image - 1.0 | |
def preprocess_mask(mask): | |
mask = mask.convert("L") | |
w, h = mask.size | |
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 | |
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST) | |
mask = np.array(mask).astype(np.float32) / 255.0 | |
mask = np.tile(mask, (4, 1, 1)) | |
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do? | |
mask = 1 - mask # repaint white, keep black | |
mask = torch.from_numpy(mask) | |
return mask | |
def load_img_1_(nparr, gray: bool = False): | |
# alpha_channel = None | |
# nparr = np.frombuffer(img_bytes, np.uint8) | |
if gray: | |
np_img = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE) | |
else: | |
np_img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED) | |
if len(np_img.shape) == 3 and np_img.shape[2] == 4: | |
alpha_channel = np_img[:, :, -1] | |
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGRA2RGB) | |
else: | |
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB) | |
return np_img, alpha_channel | |
model = None | |
def model_process_pil(input): | |
global model | |
# input = request.files | |
# RGB | |
# origin_image_bytes = input["image"].read() | |
image_pil = input['image'] | |
mask_pil = input['mask'] | |
image = np.array(image_pil) | |
mask = np.array(mask_pil.convert("L")) | |
# print(f'image_pil_ = {type(image_pil)}') | |
# print(f'mask_pil_ = {type(mask_pil)}') | |
# mask_pil.save(f'./mask_pil.png') | |
#image, alpha_channel = load_img(image) | |
# Origin image shape: (512, 512, 3) | |
alpha_channel = (np.ones((image.shape[0],image.shape[1]))*255).astype(np.uint8) | |
original_shape = image.shape | |
interpolation = cv2.INTER_CUBIC | |
# form = request.form | |
print(f'liuyz_3_here_', original_shape, alpha_channel, image.dtype, mask.dtype) | |
size_limit = "Original" # image.shape[1] # : Union[int, str] = form.get("sizeLimit", "1080") | |
if size_limit == "Original": | |
size_limit = max(image.shape) | |
else: | |
size_limit = int(size_limit) | |
config = Config( | |
ldm_steps=25, | |
ldm_sampler='plms', | |
zits_wireframe=True, | |
hd_strategy='Original', | |
hd_strategy_crop_margin=196, | |
hd_strategy_crop_trigger_size=1280, | |
hd_strategy_resize_limit=2048, | |
prompt='', | |
use_croper=False, | |
croper_x=0, | |
croper_y=0, | |
croper_height=512, | |
croper_width=512, | |
sd_mask_blur=5, | |
sd_strength=0.75, | |
sd_steps=50, | |
sd_guidance_scale=7.5, | |
sd_sampler='ddim', | |
sd_seed=42, | |
cv2_flag='INPAINT_NS', | |
cv2_radius=5, | |
) | |
# print(f'config = {config}') | |
print(f'config/alpha_channel/size_limit = {config} / {alpha_channel} / {size_limit}') | |
if config.sd_seed == -1: | |
config.sd_seed = random.randint(1, 999999999) | |
# logger.info(f"Origin image shape: {original_shape}") | |
print(f"Origin image shape: {original_shape} / {image[250][250]}") | |
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation) | |
# logger.info(f"Resized image shape: {image.shape}") | |
print(f"Resized image shape: {image.shape} / {image[250][250]} / {image.dtype}") | |
# mask, _ = load_img(mask, gray=True) | |
#mask = np.array(mask_pil) | |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation) | |
print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {mask.dtype}") | |
if model is None: | |
return None | |
start = time.time() | |
res_np_img = model(image, mask, config) | |
logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}") | |
print(f"process time_1_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}") | |
torch.cuda.empty_cache() | |
if alpha_channel is not None: | |
print(f"liuyz_here_10_: {alpha_channel.shape} / {alpha_channel.dtype} / {res_np_img.dtype}") | |
if alpha_channel.shape[:2] != res_np_img.shape[:2]: | |
print(f"liuyz_here_20_: {alpha_channel.shape} / {res_np_img.shape}") | |
alpha_channel = cv2.resize( | |
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0]) | |
) | |
print(f"liuyz_here_30_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}") | |
res_np_img = np.concatenate( | |
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1 | |
) | |
print(f"liuyz_here_40_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}") | |
print(f"process time_2_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}") | |
ext = 'png' | |
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, ext))) | |
image.save(f'./result_image.png') | |
return image # res_np_img.astype(np.uint8) # image | |
''' | |
ext = get_image_ext(origin_image_bytes) | |
return ext | |
''' | |
def model_process_filepath(input): #image, mask): | |
global model | |
# {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'} | |
# input = request.files | |
# RGB | |
origin_image_bytes = read_content(input["image"]) | |
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes)) | |
image, alpha_channel = load_img(origin_image_bytes) | |
alpha_channel = (np.ones((image.shape[0],image.shape[1]))*255).astype(np.uint8) | |
original_shape = image.shape | |
interpolation = cv2.INTER_CUBIC | |
image_pil = Image.fromarray(image) | |
# mask_pil = Image.fromarray(mask).convert("L") | |
# form = request.form | |
# print(f'size_limit_1_ = ', form["sizeLimit"], type(input["image"])) | |
size_limit = "Original" #: Union[int, str] = form.get("sizeLimit", "1080") | |
print(f'size_limit_2_ = {size_limit}') | |
if size_limit == "Original": | |
size_limit = max(image.shape) | |
else: | |
size_limit = int(size_limit) | |
print(f'size_limit_3_ = {size_limit}') | |
config = Config( | |
ldm_steps=25, | |
ldm_sampler='plms', | |
zits_wireframe=True, | |
hd_strategy='Original', | |
hd_strategy_crop_margin=196, | |
hd_strategy_crop_trigger_size=1280, | |
hd_strategy_resize_limit=2048, | |
prompt='', | |
use_croper=False, | |
croper_x=0, | |
croper_y=0, | |
croper_height=512, | |
croper_width=512, | |
sd_mask_blur=5, | |
sd_strength=0.75, | |
sd_steps=50, | |
sd_guidance_scale=7.5, | |
sd_sampler='ddim', | |
sd_seed=42, | |
cv2_flag='INPAINT_NS', | |
cv2_radius=5, | |
) | |
print(f'config/alpha_channel/size_limit = {config} / {alpha_channel} / {size_limit}') | |
if config.sd_seed == -1: | |
config.sd_seed = random.randint(1, 999999999) | |
logger.info(f"Origin image shape: {original_shape}") | |
print(f"Origin image shape: {original_shape} / {image[250][250]}") | |
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation) | |
logger.info(f"Resized image shape: {image.shape} / {type(image)}") | |
print(f"Resized image shape: {image.shape} / {image[250][250]}") | |
mask, _ = load_img(read_content(input["mask"]), gray=True) | |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation) | |
print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {alpha_channel}") | |
if model is None: | |
return None | |
start = time.time() | |
res_np_img = model(image, mask, config) | |
logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}") | |
print(f"process time_1_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}") | |
torch.cuda.empty_cache() | |
if alpha_channel is not None: | |
print(f"liuyz_here_10_: {alpha_channel.shape} / {alpha_channel.dtype} / {res_np_img.dtype}") | |
if alpha_channel.shape[:2] != res_np_img.shape[:2]: | |
print(f"liuyz_here_20_: {alpha_channel.shape} / {res_np_img.shape}") | |
alpha_channel = cv2.resize( | |
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0]) | |
) | |
print(f"liuyz_here_30_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}") | |
res_np_img = np.concatenate( | |
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1 | |
) | |
print(f"liuyz_here_40_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}") | |
ext = get_image_ext(origin_image_bytes) | |
print(f"process time_2_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype} /{ext}") | |
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, ext))) | |
image.save(f'./result_image.png') | |
return image # image | |
''' | |
ext = get_image_ext(origin_image_bytes) | |
response = make_response( | |
send_file( | |
io.BytesIO(numpy_to_bytes(res_np_img, ext)), | |
mimetype=f"image/{ext}", | |
) | |
) | |
response.headers["X-Seed"] = str(config.sd_seed) | |
return response | |
''' | |
model = ModelManager( | |
name='lama', | |
device=device, | |
# hf_access_token=HF_TOKEN_SD, | |
# sd_disable_nsfw=False, | |
# sd_cpu_textencoder=True, | |
# sd_run_local=True, | |
# callback=diffuser_callback, | |
) | |
''' | |
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float16, revision="fp16", use_auth_token=auth_token).to(device) | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
transforms.Resize((512, 512)), | |
]) | |
''' | |
def read_content(file_path): | |
"""read the content of target file | |
""" | |
with open(file_path, 'rb') as f: | |
content = f.read() | |
return content | |
image_type = 'pil' #'filepath' #'pil' | |
def predict(input): | |
print(f'liuyz_0_', input) | |
''' | |
image_np = np.array(input["image"]) | |
print(f'image_np = {image_np.shape}') | |
mask_np = np.array(input["mask"]) | |
print(f'mask_np = {mask_np.shape}') | |
''' | |
''' | |
image = dict["image"] # .convert("RGB") #.resize((512, 512)) | |
# target_size = (init_image.shape[0], init_image.shape[1]) | |
print(f'liuyz_1_', image.shape) | |
print(f'liuyz_2_', image.convert("RGB").shape) | |
print(f'liuyz_3_', image.convert("RGB").resize((512, 512)).shape) | |
# mask = dict["mask"] # .convert("RGB") #.resize((512, 512)) | |
''' | |
if image_type == 'filepath': | |
output = model_process_filepath(input) # dict["image"], dict["mask"]) | |
elif image_type == 'pil': | |
output = model_process_pil(input) | |
# output = mask #output.images[0] | |
# output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5) | |
# output = input["mask"] | |
# output = None | |
return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) | |
print(f'liuyz_500_here_') | |
css = ''' | |
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem} | |
#image_upload{min-height:512px} | |
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 512px} | |
#mask_radio .gr-form{background:transparent; border: none} | |
#word_mask{margin-top: .75em !important} | |
#word_mask textarea:disabled{opacity: 0.3} | |
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} | |
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} | |
.dark .footer {border-color: #303030} | |
.dark .footer>p {background: #0b0f19} | |
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} | |
#image_upload .touch-none{display: flex} | |
@keyframes spin { | |
from { | |
transform: rotate(0deg); | |
} | |
to { | |
transform: rotate(360deg); | |
} | |
} | |
#share-btn-container { | |
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; | |
} | |
#share-btn { | |
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; | |
} | |
#share-btn * { | |
all: unset; | |
} | |
#share-btn-container div:nth-child(-n+2){ | |
width: auto !important; | |
min-height: 0px !important; | |
} | |
#share-btn-container .wrap { | |
display: none !important; | |
} | |
''' | |
''' | |
sketchpad = Sketchpad() | |
imageupload = ImageUplaod() | |
interface = gr.Interface(fn=predict, inputs="image", outputs="image", sketchpad, imageupload) | |
interface.launch(share=True) | |
''' | |
''' | |
# gr.Interface(fn=predict, inputs="image", outputs="image").launch(share=True) | |
image = gr.Image(source='upload', tool='sketch', type="pil", label="Upload")# .style(height=400) | |
image_blocks = gr.Interface( | |
fn=predict, | |
inputs=image, | |
outputs=image, | |
# examples=[["cheetah.jpg"]], | |
) | |
image_blocks.launch(inline=True) | |
import gradio as gr | |
def greet(dict, name, is_morning, temperature): | |
image = dict['image'] | |
target_size = (image.shape[0], image.shape[1]) | |
print(f'liuyz_1_', target_size) | |
salutation = "Good morning" if is_morning else "Good evening" | |
greeting = f"{salutation} {name}. It is {temperature} degrees today" | |
celsius = (temperature - 32) * 5 / 9 | |
return image, greeting, round(celsius, 2) | |
image = gr.Image(source='upload', tool='sketch', label="上传")# .style(height=400) | |
demo = gr.Interface( | |
fn=greet, | |
inputs=[image, "text", "checkbox", gr.Slider(0, 100)], | |
outputs=['image', "text", "number"], | |
) | |
demo.launch() | |
''' | |
image_blocks = gr.Blocks(css=css) | |
with image_blocks as demo: | |
# gr.HTML(read_content("header.html")) | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(source='upload', tool='sketch',type=f'{image_type}', label="Upload").style(height=512) | |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): | |
# prompt = gr.Textbox(placeholder = 'Your prompt (what you want in place of what is erased)', show_label=False, elem_id="input-text") | |
btn = gr.Button("Done!").style( | |
margin=True, | |
rounded=(True, True, True, True), | |
full_width=True, | |
) | |
with gr.Column(): | |
image_out = gr.Image(label="Output").style(height=512) | |
''' | |
with gr.Group(elem_id="share-btn-container"): | |
community_icon = gr.HTML(community_icon_html, visible=False) | |
loading_icon = gr.HTML(loading_icon_html, visible=False) | |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False) | |
''' | |
# btn.click(fn=predict, inputs=[image, prompt], outputs=[image_out, community_icon, loading_icon, share_button]) | |
btn.click(fn=predict, inputs=[image], outputs=[image_out]) #, community_icon, loading_icon, share_button]) | |
#share_button.click(None, [], [], _js=share_js) | |
image_blocks.launch() | |