ImgCleaner / app.py
yizhangliu's picture
Update app.py
d6d0fa8
raw
history blame
12 kB
import os, sys, json, time
os.system("pip install gradio==3.36.1")
import gradio as gr
from PIL import Image
import numpy as np
import torch
import cv2
import io
import multiprocessing
import random
from loguru import logger
from utils import *
from share_btn import *
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
except:
pass
from lama_cleaner.helper import (
load_img,
numpy_to_bytes,
resize_max_size,
)
NUM_THREADS = str(multiprocessing.cpu_count())
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f'device = {device}')
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
def get_image_enhancer(scale = 2, device='cuda:0'):
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from gfpgan import GFPGANer
realesrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
num_block=23, num_grow_ch=32, scale=4
)
netscale = scale
model_realesrgan = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
upsampler = RealESRGANer(
scale=netscale,
model_path=model_realesrgan,
model=realesrgan_model,
tile=0,
tile_pad=10,
pre_pad=0,
half=False if device=='cpu' else True,
device=device
)
model_GFPGAN = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'
img_enhancer = GFPGANer(
model_path=model_GFPGAN,
upscale=scale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler,
device=device
)
return img_enhancer
image_enhancer = None
if sys.platform == 'linux' and 0==1:
image_enhancer = get_image_enhancer(scale = 1, device=device)
model = None
def model_process(image, mask, img_enhancer):
global model,image_enhancer
ori_image = image
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
# rotate image
ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
image = ori_image
original_shape = ori_image.shape
interpolation = cv2.INTER_CUBIC
size_limit = 1080
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
config = Config(
ldm_steps=25,
ldm_sampler='plms',
zits_wireframe=True,
hd_strategy='Original',
hd_strategy_crop_margin=196,
hd_strategy_crop_trigger_size=1280,
hd_strategy_resize_limit=2048,
prompt='',
use_croper=False,
croper_x=0,
croper_y=0,
croper_height=512,
croper_width=512,
sd_mask_blur=5,
sd_strength=0.75,
sd_steps=50,
sd_guidance_scale=7.5,
sd_sampler='ddim',
sd_seed=42,
cv2_flag='INPAINT_NS',
cv2_radius=5,
)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
logger.info(f"Resized image shape_1_: {image.shape}")
logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")
if model is None:
return None
res_np_img = model(image, mask, config)
torch.cuda.empty_cache()
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
if image_enhancer is not None and img_enhancer:
start = time.time()
input_img_rgb = np.array(image)
input_img_bgr = input_img_rgb[...,[2,1,0]]
_, _, enhance_img = image_enhancer.enhance(input_img_bgr, has_aligned=False,
only_center_face=False, paste_back=True)
input_img_rgb = enhance_img[...,[2,1,0]]
img_enhance = Image.fromarray(np.uint8(input_img_rgb))
image = img_enhance
log_info = f"image_enhancer_: {(time.time() - start) * 1000}ms, {res_np_img.shape} "
logger.info(log_info)
return image, Image.fromarray(ori_image)
def resize_image(pil_image, new_width=400):
width, height = pil_image.size
new_height = int(height*(new_width/width))
pil_image = pil_image.resize((new_width, new_height))
return pil_image
model = ModelManager(
name='lama',
device=device,
)
image_type = 'pil' # filepath'
def predict(input, platform_radio, img_enhancer):
if input is None:
return None, [], gr.update(visible=False)
if image_type == 'filepath':
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
origin_image_bytes = open(input["image"], 'rb').read()
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
image, _ = load_img(origin_image_bytes)
mask, _ = load_img(open(input["mask"], 'rb').read(), gray=True)
elif image_type == 'pil':
# input: {'image': pil, 'mask': pil}
image_pil = input['image']
mask_pil = input['mask']
image = np.array(image_pil)
mask = np.array(mask_pil.convert("L"))
output, ori_image = model_process(image, mask, img_enhancer)
if platform_radio == 'pc':
return output, [ori_image, output], gr.update(visible=True)
else:
return output, [resize_image(ori_image, new_width=400), resize_image(output, new_width=400)], gr.update(visible=True)
image_blocks = gr.Blocks(css=css, title='Image Cleaner')
with image_blocks as demo:
with gr.Group(elem_id="page_1", visible=True) as page_1:
with gr.Box():
with gr.Row(elem_id="gallery_row"):
with gr.Column(elem_id="gallery_col"):
gallery = gr.Gallery(value=['./sample_00.jpg','./sample_00_e.jpg'], show_label=False)
gallery.style(grid=[2], height='500px')
with gr.Row():
with gr.Column():
begin_button = gr.Button("Let's GO!", elem_id="begin-btn", visible=True)
with gr.Row():
with gr.Column():
gr.HTML("""
<div style='margin: 0 auto; text-align: center;color:red;'>
<p>
Solemnly promise: this application will not collect any user information and image resources.
</p>
</div>
<div style='margin: 0 auto; text-align: center'>
The model comes from <a href='https://github.com/Sanster/lama-cleaner' target=_blank>[<font style='color:blue;'>Lama</font>]</a>. Thanks! ❤️<br>
<a href='https://huggingface.co' target=_blank>[<font style='color:blue;'>huggingface.co</font>]</a> provides code hosting. Thanks! ❤️
</div>
"""
)
with gr.Group(elem_id="page_2", visible=False) as page_2:
with gr.Box(elem_id="work-container"):
with gr.Row(elem_id="input-container"):
with gr.Column():
image_input = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}',
label="Upload", show_label=False).style(mobile_collapse=False)
with gr.Row(elem_id="scroll_x_row"):
with gr.Column(id="scroll_x_col"):
gr.HTML("""
<div id="scroll_x_container" style="width:100%;height:25px;"></div>
"""
)
with gr.Row(elem_id="op-container").style(mobile_collapse=False, equal_height=True):
with gr.Column(elem_id="erase-btn-container"):
erase_btn = gr.Button(value = "Erase(⏬)",elem_id="erase-btn").style(
margin=True,
rounded=(True, True, True, True),
full_width=True,
).style(width=100)
with gr.Column(elem_id="enhancer-checkbox", visible=True if image_enhancer is not None else False):
enhancer_label = 'Enhanced image(processing is very slow, please check only for blurred images)'
img_enhancer = gr.Checkbox(label=enhancer_label).style(width=150)
with gr.Row(elem_id="output-container"):
with gr.Column(elem_id="image-output-container"):
image_out = gr.Image(elem_id="image_output",label="Result", show_label=False, visible=False)
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="600px")
platform_radio = gr.Radio(["pc", "mobile"], elem_id="platform_radio",value="pc",
label="platform:", show_label=True, visible=False)
with gr.Row(elem_id="download-container", visible=False) as download_container:
with gr.Column(elem_id="download-btn-container") as download_btn_container:
download_button = gr.Button(elem_id="download-btn", value="Save(⏩)")
with gr.Column(elem_id="share-container") as share_container:
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, elem_id="community-icon", visible=True)
loading_icon = gr.HTML(loading_icon_html, elem_id="loading-icon", visible=True)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
with gr.Row(elem_id="log_row"):
with gr.Column(id="log_col"):
gr.HTML("""
<div id="log_container" style="width:100%;height:auto;">
</div>
"""
)
erase_btn.click(fn=predict, inputs=[image_input, platform_radio, img_enhancer], outputs=[image_out, gallery, download_container])
download_button.click(None, [], [], _js=download_img)
share_button.click(None, [], [], _js=share_js)
begin_button.click(fn=None, inputs=[], outputs=[page_1, page_2], _js=start_cleaner)
os.system("pip list")
image_blocks.launch(server_name='0.0.0.0')