Spaces:
Running
Running
yizhangliu
commited on
Commit
•
039e64f
1
Parent(s):
f4e2d95
Update app.py
Browse files
app.py
CHANGED
@@ -144,7 +144,7 @@ def model_process(input):
|
|
144 |
interpolation = cv2.INTER_CUBIC
|
145 |
|
146 |
# form = request.form
|
147 |
-
print(f'liuyz_3_here_', original_shape, alpha_channel)
|
148 |
|
149 |
size_limit = "Original" # image.shape[1] # : Union[int, str] = form.get("sizeLimit", "1080")
|
150 |
if size_limit == "Original":
|
@@ -186,12 +186,12 @@ def model_process(input):
|
|
186 |
print(f"Origin image shape: {original_shape} / {image[250][250]}")
|
187 |
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
188 |
# logger.info(f"Resized image shape: {image.shape}")
|
189 |
-
print(f"Resized image shape: {image.shape} / {image[250][250]}")
|
190 |
|
191 |
# mask, _ = load_img(mask, gray=True)
|
192 |
mask = np.array(mask_pil)
|
193 |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
194 |
-
print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]}")
|
195 |
|
196 |
if model is None:
|
197 |
return None
|
@@ -199,7 +199,7 @@ def model_process(input):
|
|
199 |
start = time.time()
|
200 |
res_np_img = model(image, mask, config)
|
201 |
logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}")
|
202 |
-
print(f"process time_1_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]}")
|
203 |
|
204 |
torch.cuda.empty_cache()
|
205 |
|
@@ -210,7 +210,7 @@ def model_process(input):
|
|
210 |
alpha_channel = cv2.resize(
|
211 |
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
|
212 |
)
|
213 |
-
|
214 |
res_np_img = np.concatenate(
|
215 |
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
|
216 |
)
|
|
|
144 |
interpolation = cv2.INTER_CUBIC
|
145 |
|
146 |
# form = request.form
|
147 |
+
print(f'liuyz_3_here_', original_shape, alpha_channel, image.dtype, mask.dtype)
|
148 |
|
149 |
size_limit = "Original" # image.shape[1] # : Union[int, str] = form.get("sizeLimit", "1080")
|
150 |
if size_limit == "Original":
|
|
|
186 |
print(f"Origin image shape: {original_shape} / {image[250][250]}")
|
187 |
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
188 |
# logger.info(f"Resized image shape: {image.shape}")
|
189 |
+
print(f"Resized image shape: {image.shape} / {image[250][250]} / {iamge.dtype}")
|
190 |
|
191 |
# mask, _ = load_img(mask, gray=True)
|
192 |
mask = np.array(mask_pil)
|
193 |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
194 |
+
print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {mask.dtype}")
|
195 |
|
196 |
if model is None:
|
197 |
return None
|
|
|
199 |
start = time.time()
|
200 |
res_np_img = model(image, mask, config)
|
201 |
logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}")
|
202 |
+
print(f"process time_1_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")
|
203 |
|
204 |
torch.cuda.empty_cache()
|
205 |
|
|
|
210 |
alpha_channel = cv2.resize(
|
211 |
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
|
212 |
)
|
213 |
+
print(f"liuyz_here_30_: {alpha_channel.shape} / {res_np_img.shape}")
|
214 |
res_np_img = np.concatenate(
|
215 |
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
|
216 |
)
|