yizhangliu commited on
Commit
08d22d8
1 Parent(s): f3f61d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -11
app.py CHANGED
@@ -120,13 +120,14 @@ def load_img_1_(nparr, gray: bool = False):
120
  return np_img, alpha_channel
121
 
122
  model = None
123
- def model_process_1(image, mask):
124
  global model
125
 
126
  # input = request.files
127
  # RGB
128
  # origin_image_bytes = input["image"].read()
129
-
 
130
  print(f'liuyz_2_here_', type(image), image.shape)
131
 
132
  image_pil = Image.fromarray(image)
@@ -138,7 +139,7 @@ def model_process_1(image, mask):
138
  #image, alpha_channel = load_img(image)
139
  # Origin image shape: (512, 512, 3)
140
 
141
- alpha_channel = None
142
  original_shape = image.shape
143
  interpolation = cv2.INTER_CUBIC
144
 
@@ -188,7 +189,7 @@ def model_process_1(image, mask):
188
  print(f"Resized image shape: {image.shape} / {image[250][250]}")
189
 
190
  # mask, _ = load_img(mask, gray=True)
191
- mask = np.array(mask_pil)
192
  mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
193
  print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]}")
194
 
@@ -201,10 +202,7 @@ def model_process_1(image, mask):
201
  print(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape} / {res_np_img[250][250]}")
202
 
203
  torch.cuda.empty_cache()
204
- image = Image.fromarray(res_np_img)
205
- image.save(f'./result_image.png')
206
- return image
207
- '''
208
  if alpha_channel is not None:
209
  if alpha_channel.shape[:2] != res_np_img.shape[:2]:
210
  alpha_channel = cv2.resize(
@@ -213,12 +211,16 @@ def model_process_1(image, mask):
213
  res_np_img = np.concatenate(
214
  (res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
215
  )
216
-
 
 
 
 
217
  ext = get_image_ext(origin_image_bytes)
218
  return ext
219
  '''
220
 
221
- def model_process(input): #image, mask):
222
  global model
223
  # {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
224
  # input = request.files
@@ -355,7 +357,7 @@ def predict(input):
355
  print(f'liuyz_3_', image.convert("RGB").resize((512, 512)).shape)
356
  # mask = dict["mask"] # .convert("RGB") #.resize((512, 512))
357
  '''
358
- # output = model_process(input) # dict["image"], dict["mask"])
359
 
360
  # output = mask #output.images[0]
361
  # output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
 
120
  return np_img, alpha_channel
121
 
122
  model = None
123
+ def model_process(input):
124
  global model
125
 
126
  # input = request.files
127
  # RGB
128
  # origin_image_bytes = input["image"].read()
129
+ image = input['image']
130
+ mask = input['mask']
131
  print(f'liuyz_2_here_', type(image), image.shape)
132
 
133
  image_pil = Image.fromarray(image)
 
139
  #image, alpha_channel = load_img(image)
140
  # Origin image shape: (512, 512, 3)
141
 
142
+ alpha_channel = np.ones((image.shape[0],image.shape[1]))*255
143
  original_shape = image.shape
144
  interpolation = cv2.INTER_CUBIC
145
 
 
189
  print(f"Resized image shape: {image.shape} / {image[250][250]}")
190
 
191
  # mask, _ = load_img(mask, gray=True)
192
+ # mask = np.array(mask_pil)
193
  mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
194
  print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]}")
195
 
 
202
  print(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape} / {res_np_img[250][250]}")
203
 
204
  torch.cuda.empty_cache()
205
+
 
 
 
206
  if alpha_channel is not None:
207
  if alpha_channel.shape[:2] != res_np_img.shape[:2]:
208
  alpha_channel = cv2.resize(
 
211
  res_np_img = np.concatenate(
212
  (res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
213
  )
214
+ image = Image.fromarray(res_np_img)
215
+ image.save(f'./result_image.png')
216
+ return image
217
+
218
+ '''
219
  ext = get_image_ext(origin_image_bytes)
220
  return ext
221
  '''
222
 
223
+ def model_process_2(input): #image, mask):
224
  global model
225
  # {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
226
  # input = request.files
 
357
  print(f'liuyz_3_', image.convert("RGB").resize((512, 512)).shape)
358
  # mask = dict["mask"] # .convert("RGB") #.resize((512, 512))
359
  '''
360
+ output = model_process(input) # dict["image"], dict["mask"])
361
 
362
  # output = mask #output.images[0]
363
  # output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)