yizhangliu commited on
Commit
19586cf
1 Parent(s): 797024c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -14
app.py CHANGED
@@ -152,17 +152,12 @@ def model_process(image, mask):
152
  cv2_flag='INPAINT_NS',
153
  cv2_radius=5,
154
  )
155
- '''
156
- config = ldm_steps=25 ldm_sampler='plms' zits_wireframe=True hd_strategy='Original' hd_strategy_crop_margin=196
157
- hd_strategy_crop_trigger_size=1280 hd_strategy_resize_limit=2048
158
- '''
159
-
160
- print(f'config = {config}')
161
 
162
- # if config.sd_seed == -1:
163
- # config.sd_seed = random.randint(1, 999999999)
164
 
165
- config.sd_seed = 42
166
  # logger.info(f"Origin image shape: {original_shape}")
167
  print(f"Origin image shape: {original_shape}")
168
  image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
@@ -177,10 +172,12 @@ def model_process(image, mask):
177
 
178
  start = time.time()
179
  res_np_img = model(image, mask, config)
180
- logger.info(f"process time: {(time.time() - start) * 1000}ms")
181
 
182
  torch.cuda.empty_cache()
183
 
 
 
184
  if alpha_channel is not None:
185
  if alpha_channel.shape[:2] != res_np_img.shape[:2]:
186
  alpha_channel = cv2.resize(
@@ -192,8 +189,8 @@ def model_process(image, mask):
192
 
193
  ext = get_image_ext(origin_image_bytes)
194
  return ext
 
195
 
196
- '''
197
  model = ModelManager(
198
  name='lama',
199
  device=device,
@@ -203,7 +200,6 @@ model = ModelManager(
203
  # sd_run_local=True,
204
  # callback=diffuser_callback,
205
  )
206
- '''
207
 
208
  '''
209
  pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float16, revision="fp16", use_auth_token=auth_token).to(device)
@@ -235,8 +231,8 @@ def predict(dict):
235
  '''
236
  image = Image.fromarray(dict["image"])
237
  mask = Image.fromarray(dict["mask"])
238
- output1 = model_process(dict["image"], dict["mask"])
239
- output = mask #output.images[0]
240
  # output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
241
 
242
  return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
 
152
  cv2_flag='INPAINT_NS',
153
  cv2_radius=5,
154
  )
155
+
156
+ # print(f'config = {config}')
 
 
 
 
157
 
158
+ if config.sd_seed == -1:
159
+ config.sd_seed = random.randint(1, 999999999)
160
 
 
161
  # logger.info(f"Origin image shape: {original_shape}")
162
  print(f"Origin image shape: {original_shape}")
163
  image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
 
172
 
173
  start = time.time()
174
  res_np_img = model(image, mask, config)
175
+ logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}")
176
 
177
  torch.cuda.empty_cache()
178
 
179
+ return Image.fromarray(res_np_img)
180
+ '''
181
  if alpha_channel is not None:
182
  if alpha_channel.shape[:2] != res_np_img.shape[:2]:
183
  alpha_channel = cv2.resize(
 
189
 
190
  ext = get_image_ext(origin_image_bytes)
191
  return ext
192
+ '''
193
 
 
194
  model = ModelManager(
195
  name='lama',
196
  device=device,
 
200
  # sd_run_local=True,
201
  # callback=diffuser_callback,
202
  )
 
203
 
204
  '''
205
  pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float16, revision="fp16", use_auth_token=auth_token).to(device)
 
231
  '''
232
  image = Image.fromarray(dict["image"])
233
  mask = Image.fromarray(dict["mask"])
234
+ output = model_process(dict["image"], dict["mask"])
235
+ # output = mask #output.images[0]
236
  # output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
237
 
238
  return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)