Spaces:
Running
Running
yizhangliu
commited on
Commit
·
924af64
1
Parent(s):
24a45a8
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
-
import PIL
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
-
import os
|
6 |
import uuid
|
7 |
import torch
|
8 |
-
from torch import autocast
|
9 |
import cv2
|
10 |
-
from io import BytesIO
|
11 |
-
|
12 |
-
from matplotlib import pyplot as plt
|
13 |
-
from torchvision import transforms
|
14 |
|
15 |
import io
|
16 |
-
import logging
|
17 |
import multiprocessing
|
18 |
import random
|
19 |
import time
|
20 |
import imghdr
|
21 |
-
from pathlib import Path
|
22 |
-
from typing import Union
|
23 |
from loguru import logger
|
24 |
|
25 |
from lama_cleaner.model_manager import ModelManager
|
@@ -33,7 +24,6 @@ try:
|
|
33 |
except:
|
34 |
pass
|
35 |
|
36 |
-
|
37 |
from lama_cleaner.helper import (
|
38 |
load_img,
|
39 |
numpy_to_bytes,
|
@@ -58,19 +48,13 @@ HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')
|
|
58 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
59 |
print(f'device = {device}')
|
60 |
|
61 |
-
def
|
62 |
-
w = imghdr.what("", img_bytes)
|
63 |
-
if w is None:
|
64 |
-
w = "jpeg"
|
65 |
-
return w
|
66 |
-
|
67 |
-
def read_content(file_path):
|
68 |
"""read the content of target file
|
69 |
"""
|
70 |
-
with open(file_path, '
|
71 |
content = f.read()
|
72 |
return content
|
73 |
-
|
74 |
def get_image_enhancer(scale = 2, device='cuda:0'):
|
75 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
76 |
from realesrgan import RealESRGANer
|
@@ -105,7 +89,9 @@ def get_image_enhancer(scale = 2, device='cuda:0'):
|
|
105 |
)
|
106 |
return img_enhancer
|
107 |
|
108 |
-
image_enhancer =
|
|
|
|
|
109 |
|
110 |
model = None
|
111 |
|
@@ -119,7 +105,7 @@ def model_process(image, mask, img_enhancer):
|
|
119 |
original_shape = image.shape
|
120 |
interpolation = cv2.INTER_CUBIC
|
121 |
|
122 |
-
size_limit = 1080
|
123 |
if size_limit == "Original":
|
124 |
size_limit = max(image.shape)
|
125 |
else:
|
@@ -193,10 +179,10 @@ def predict(input, img_enhancer):
|
|
193 |
return None
|
194 |
if image_type == 'filepath':
|
195 |
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
|
196 |
-
origin_image_bytes =
|
197 |
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
|
198 |
image, _ = load_img(origin_image_bytes)
|
199 |
-
mask, _ = load_img(
|
200 |
elif image_type == 'pil':
|
201 |
# input: {'image': pil, 'mask': pil}
|
202 |
image_pil = input['image']
|
@@ -206,22 +192,17 @@ def predict(input, img_enhancer):
|
|
206 |
output = model_process(image, mask, img_enhancer)
|
207 |
return output
|
208 |
|
|
|
209 |
css = '''
|
210 |
.container {max-width: 100%;margin: auto;padding-top: 1.5rem}
|
211 |
-
|
212 |
#work-container {min-width: min(160px, 100%) !important;flex-grow: 0 !important}
|
213 |
-
#image_upload{min-height:610px}
|
214 |
-
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 620px}
|
215 |
#image_output{margin: 0 auto; text-align: center;width:640px}
|
216 |
#erase-container{margin: 0 auto; text-align: center;width:150px;border-width:5px;border-color:#2c9748}
|
217 |
#enhancer-checkbox{width:520px}
|
218 |
#enhancer-tip{width:450px}
|
219 |
#enhancer-tip-div{text-align: left}
|
220 |
#prompt-container{margin: 0 auto; text-align: center;width:fit-content;min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
|
221 |
-
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
|
222 |
-
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
|
223 |
-
.dark .footer {border-color: #303030}
|
224 |
-
.dark .footer>p {background: #0b0f19}
|
225 |
#image_upload .touch-none{display: flex}
|
226 |
@keyframes spin {
|
227 |
from {
|
@@ -232,15 +213,63 @@ css = '''
|
|
232 |
}
|
233 |
}
|
234 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
image_blocks = gr.Blocks(css=css)
|
237 |
with image_blocks as demo:
|
238 |
-
with gr.Group():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
with gr.Box(elem_id="work-container"):
|
240 |
with gr.Row(elem_id="input-container"):
|
241 |
with gr.Column():
|
242 |
image = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}',
|
243 |
-
label="Upload(载入图片)", show_label=
|
244 |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
|
245 |
with gr.Column(elem_id="erase-container"):
|
246 |
btn_erase = gr.Button(value = "Erase(擦除↓)",elem_id="erase_btn").style(
|
@@ -248,13 +277,15 @@ with image_blocks as demo:
|
|
248 |
rounded=(True, True, True, True),
|
249 |
full_width=True,
|
250 |
).style(width=100)
|
251 |
-
with gr.Column(elem_id="enhancer-checkbox"):
|
252 |
enhancer_label = 'Enhanced image(processing is very slow, please check only for blurred images)【增强图像(处理很慢,请仅针对模糊图像做勾选)】'
|
253 |
img_enhancer = gr.Checkbox(label=enhancer_label).style(width=150)
|
254 |
with gr.Row(elem_id="output-container"):
|
255 |
with gr.Column():
|
256 |
-
image_out = gr.Image(
|
257 |
|
258 |
btn_erase.click(fn=predict, inputs=[image, img_enhancer], outputs=[image_out])
|
259 |
-
|
|
|
|
|
260 |
image_blocks.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
4 |
+
import os,sys
|
5 |
import uuid
|
6 |
import torch
|
|
|
7 |
import cv2
|
|
|
|
|
|
|
|
|
8 |
|
9 |
import io
|
|
|
10 |
import multiprocessing
|
11 |
import random
|
12 |
import time
|
13 |
import imghdr
|
|
|
|
|
14 |
from loguru import logger
|
15 |
|
16 |
from lama_cleaner.model_manager import ModelManager
|
|
|
24 |
except:
|
25 |
pass
|
26 |
|
|
|
27 |
from lama_cleaner.helper import (
|
28 |
load_img,
|
29 |
numpy_to_bytes,
|
|
|
48 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
49 |
print(f'device = {device}')
|
50 |
|
51 |
+
def read_content(file_path: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
"""read the content of target file
|
53 |
"""
|
54 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
55 |
content = f.read()
|
56 |
return content
|
57 |
+
|
58 |
def get_image_enhancer(scale = 2, device='cuda:0'):
|
59 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
60 |
from realesrgan import RealESRGANer
|
|
|
89 |
)
|
90 |
return img_enhancer
|
91 |
|
92 |
+
image_enhancer = None
|
93 |
+
if sys.platform == 'linux':
|
94 |
+
image_enhancer = get_image_enhancer(scale = 1, device=device)
|
95 |
|
96 |
model = None
|
97 |
|
|
|
105 |
original_shape = image.shape
|
106 |
interpolation = cv2.INTER_CUBIC
|
107 |
|
108 |
+
size_limit = 1080
|
109 |
if size_limit == "Original":
|
110 |
size_limit = max(image.shape)
|
111 |
else:
|
|
|
179 |
return None
|
180 |
if image_type == 'filepath':
|
181 |
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
|
182 |
+
origin_image_bytes = open(input["image"], 'rb').read()
|
183 |
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
|
184 |
image, _ = load_img(origin_image_bytes)
|
185 |
+
mask, _ = load_img(open(input["mask"], 'rb').read(), gray=True)
|
186 |
elif image_type == 'pil':
|
187 |
# input: {'image': pil, 'mask': pil}
|
188 |
image_pil = input['image']
|
|
|
192 |
output = model_process(image, mask, img_enhancer)
|
193 |
return output
|
194 |
|
195 |
+
|
196 |
css = '''
|
197 |
.container {max-width: 100%;margin: auto;padding-top: 1.5rem}
|
198 |
+
#begin-btn {color: blue; font-size:20px;}
|
199 |
#work-container {min-width: min(160px, 100%) !important;flex-grow: 0 !important}
|
|
|
|
|
200 |
#image_output{margin: 0 auto; text-align: center;width:640px}
|
201 |
#erase-container{margin: 0 auto; text-align: center;width:150px;border-width:5px;border-color:#2c9748}
|
202 |
#enhancer-checkbox{width:520px}
|
203 |
#enhancer-tip{width:450px}
|
204 |
#enhancer-tip-div{text-align: left}
|
205 |
#prompt-container{margin: 0 auto; text-align: center;width:fit-content;min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
|
|
|
|
|
|
|
|
|
206 |
#image_upload .touch-none{display: flex}
|
207 |
@keyframes spin {
|
208 |
from {
|
|
|
213 |
}
|
214 |
}
|
215 |
'''
|
216 |
+
set_page_elements = """async () => {
|
217 |
+
function isMobile() {
|
218 |
+
try {
|
219 |
+
document.createEvent("TouchEvent"); return true;
|
220 |
+
} catch(e) {
|
221 |
+
return false;
|
222 |
+
}
|
223 |
+
}
|
224 |
+
|
225 |
+
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
|
226 |
+
if (!gradioEl) {
|
227 |
+
gradioEl = document.querySelector('body > gradio-app');
|
228 |
+
}
|
229 |
+
var group1 = gradioEl.querySelectorAll('#group_1')[0];
|
230 |
+
var group2 = gradioEl.querySelectorAll('#group_2')[0];
|
231 |
+
var image_upload = gradioEl.querySelectorAll('#image_upload')[0];
|
232 |
+
var image_output = gradioEl.querySelectorAll('#image_output')[0];
|
233 |
+
var data_image = gradioEl.querySelectorAll('#image_upload [data-testid="image"]')[0];
|
234 |
+
var data_image_div = gradioEl.querySelectorAll('#image_upload [data-testid="image"] > div')[0];
|
235 |
+
|
236 |
+
if (isMobile()) {
|
237 |
+
var group1_width = group1.offsetWidth;
|
238 |
+
image_upload.setAttribute('style', 'width:' + (group1_width - 13*2) + 'px; min-height:none;');
|
239 |
+
data_image.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;');
|
240 |
+
data_image_div.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;');
|
241 |
+
image_output.setAttribute('style', 'width: ' + (group1_width - 13*2) + 'px;min-height:none;');
|
242 |
+
var enhancer = gradioEl.querySelectorAll('#enhancer-checkbox')[0];
|
243 |
+
enhancer.style.display = "none";
|
244 |
+
} else {
|
245 |
+
image_upload.setAttribute('style', 'min-height: 600px; overflow-x: overlay');
|
246 |
+
data_image.setAttribute('style', 'height: 600px');
|
247 |
+
data_image_div.setAttribute('style', 'min-height: 600px');
|
248 |
+
image_output.setAttribute('style', 'width: 600px');
|
249 |
+
}
|
250 |
+
group1.style.display = "none";
|
251 |
+
group2.style.display = "block";
|
252 |
+
|
253 |
+
}"""
|
254 |
|
255 |
image_blocks = gr.Blocks(css=css)
|
256 |
with image_blocks as demo:
|
257 |
+
with gr.Group(elem_id="group_1", visible=True) as group_1:
|
258 |
+
with gr.Box():
|
259 |
+
with gr.Row():
|
260 |
+
with gr.Column():
|
261 |
+
gallery = gr.Gallery(value=['./sample_00.jpg','./sample_00_e.jpg'], show_label=False)
|
262 |
+
gallery.style(grid=[2], width=320)
|
263 |
+
with gr.Row():
|
264 |
+
with gr.Column():
|
265 |
+
begin_button = gr.Button("Let's GO!", elem_id="begin-btn", visible=True)
|
266 |
+
|
267 |
+
with gr.Group(elem_id="group_2", visible=False) as group_2:
|
268 |
with gr.Box(elem_id="work-container"):
|
269 |
with gr.Row(elem_id="input-container"):
|
270 |
with gr.Column():
|
271 |
image = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}',
|
272 |
+
label="Upload(载入图片)", show_label=False).style(mobile_collapse=False)
|
273 |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
|
274 |
with gr.Column(elem_id="erase-container"):
|
275 |
btn_erase = gr.Button(value = "Erase(擦除↓)",elem_id="erase_btn").style(
|
|
|
277 |
rounded=(True, True, True, True),
|
278 |
full_width=True,
|
279 |
).style(width=100)
|
280 |
+
with gr.Column(elem_id="enhancer-checkbox", visible=True if image_enhancer is not None else False):
|
281 |
enhancer_label = 'Enhanced image(processing is very slow, please check only for blurred images)【增强图像(处理很慢,请仅针对模糊图像做勾选)】'
|
282 |
img_enhancer = gr.Checkbox(label=enhancer_label).style(width=150)
|
283 |
with gr.Row(elem_id="output-container"):
|
284 |
with gr.Column():
|
285 |
+
image_out = gr.Image(elem_id="image_output",label="Result", show_label=False)
|
286 |
|
287 |
btn_erase.click(fn=predict, inputs=[image, img_enhancer], outputs=[image_out])
|
288 |
+
|
289 |
+
begin_button.click(fn=None, inputs=[], outputs=[group_1, group_2], _js=set_page_elements)
|
290 |
+
|
291 |
image_blocks.launch()
|