yizhangliu commited on
Commit
960b239
·
1 Parent(s): 076742e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -223,7 +223,7 @@ def model_process(input): #image, mask):
223
  # {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
224
  # input = request.files
225
  # RGB
226
- origin_image_bytes = open(input["image"],'rb').read()
227
  print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
228
 
229
  image, alpha_channel = load_img(origin_image_bytes)
@@ -274,9 +274,9 @@ def model_process(input): #image, mask):
274
  logger.info(f"Resized image shape: {image.shape} / {type(image)}")
275
  print(f"Resized image shape: {image.shape} / {image[250][250]}")
276
 
277
- mask, _ = load_img(open(input["mask"],'rb').read(), gray=True)
278
  mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
279
- print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]}")
280
 
281
  start = time.time()
282
  res_np_img = model(image, mask, config)
@@ -331,20 +331,22 @@ transform = transforms.Compose([
331
  ])
332
  '''
333
 
334
- def read_content(file_path: str) -> str:
335
  """read the content of target file
336
  """
337
- with open(file_path, 'r', encoding='utf-8') as f:
338
  content = f.read()
339
 
340
  return content
341
 
342
  def predict(input):
343
  print(f'liuyz_0_', input)
 
344
  image_np = np.array(input["image"])
345
  print(f'image_np = {image_np.shape}')
346
  mask_np = np.array(input["mask"])
347
- print(f'mask_np = {mask_np.shape}')
 
348
  '''
349
  image = dict["image"] # .convert("RGB") #.resize((512, 512))
350
  # target_size = (init_image.shape[0], init_image.shape[1])
@@ -353,11 +355,11 @@ def predict(input):
353
  print(f'liuyz_3_', image.convert("RGB").resize((512, 512)).shape)
354
  # mask = dict["mask"] # .convert("RGB") #.resize((512, 512))
355
  '''
356
- # output = model_process(input) # dict["image"], dict["mask"])
357
 
358
  # output = mask #output.images[0]
359
  # output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
360
- output = input["mask"]
361
  return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
362
 
363
  print(f'liuyz_500_here_')
 
223
  # {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
224
  # input = request.files
225
  # RGB
226
+ origin_image_bytes = read_content(input["image"])
227
  print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
228
 
229
  image, alpha_channel = load_img(origin_image_bytes)
 
274
  logger.info(f"Resized image shape: {image.shape} / {type(image)}")
275
  print(f"Resized image shape: {image.shape} / {image[250][250]}")
276
 
277
+ mask, alpha_channel = load_img(read_content(input["mask"]), gray=True)
278
  mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
279
+ print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {alpha_channel}")
280
 
281
  start = time.time()
282
  res_np_img = model(image, mask, config)
 
331
  ])
332
  '''
333
 
334
+ def read_content(file_path: str):
335
  """read the content of target file
336
  """
337
+ with open(file_path, 'rb', encoding='utf-8') as f:
338
  content = f.read()
339
 
340
  return content
341
 
342
  def predict(input):
343
  print(f'liuyz_0_', input)
344
+ '''
345
  image_np = np.array(input["image"])
346
  print(f'image_np = {image_np.shape}')
347
  mask_np = np.array(input["mask"])
348
+ print(f'mask_np = {mask_np.shape}')
349
+ '''
350
  '''
351
  image = dict["image"] # .convert("RGB") #.resize((512, 512))
352
  # target_size = (init_image.shape[0], init_image.shape[1])
 
355
  print(f'liuyz_3_', image.convert("RGB").resize((512, 512)).shape)
356
  # mask = dict["mask"] # .convert("RGB") #.resize((512, 512))
357
  '''
358
+ output = model_process(input) # dict["image"], dict["mask"])
359
 
360
  # output = mask #output.images[0]
361
  # output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
362
+ # output = input["mask"]
363
  return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
364
 
365
  print(f'liuyz_500_here_')