Spaces:
Running
Running
yizhangliu
commited on
Commit
·
bba2454
1
Parent(s):
210411f
Update app.py
Browse files
app.py
CHANGED
@@ -34,7 +34,7 @@ from loguru import logger
|
|
34 |
|
35 |
from lama_cleaner.model_manager import ModelManager
|
36 |
from lama_cleaner.schema import Config
|
37 |
-
|
38 |
try:
|
39 |
torch._C._jit_override_can_fuse_on_cpu(False)
|
40 |
torch._C._jit_override_can_fuse_on_gpu(False)
|
@@ -104,6 +104,7 @@ def preprocess_mask(mask):
|
|
104 |
mask = torch.from_numpy(mask)
|
105 |
return mask
|
106 |
|
|
|
107 |
def model_process(init_image, mask):
|
108 |
global model
|
109 |
|
@@ -117,8 +118,7 @@ def model_process(init_image, mask):
|
|
117 |
# image, alpha_channel = load_img(origin_image_bytes)
|
118 |
# Origin image shape: (512, 512, 3)
|
119 |
original_shape = init_image.shape
|
120 |
-
interpolation = cv2.INTER_CUBIC
|
121 |
-
|
122 |
|
123 |
# form = request.form
|
124 |
|
@@ -160,7 +160,10 @@ def model_process(init_image, mask):
|
|
160 |
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
161 |
# logger.info(f"Resized image shape: {image.shape}")
|
162 |
print(f"Resized image shape: {image.shape}")
|
163 |
-
|
|
|
|
|
|
|
164 |
mask, _ = load_img(input["mask"].read(), gray=True)
|
165 |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
166 |
|
@@ -182,6 +185,7 @@ def model_process(init_image, mask):
|
|
182 |
ext = get_image_ext(origin_image_bytes)
|
183 |
return ext
|
184 |
|
|
|
185 |
model = ModelManager(
|
186 |
name='lama',
|
187 |
device=device,
|
@@ -223,7 +227,7 @@ def predict(dict):
|
|
223 |
'''
|
224 |
image = Image.fromarray(dict["image"])
|
225 |
mask = Image.fromarray(dict["mask"])
|
226 |
-
|
227 |
output = mask #output.images[0]
|
228 |
# output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
|
229 |
|
|
|
34 |
|
35 |
from lama_cleaner.model_manager import ModelManager
|
36 |
from lama_cleaner.schema import Config
|
37 |
+
|
38 |
try:
|
39 |
torch._C._jit_override_can_fuse_on_cpu(False)
|
40 |
torch._C._jit_override_can_fuse_on_gpu(False)
|
|
|
104 |
mask = torch.from_numpy(mask)
|
105 |
return mask
|
106 |
|
107 |
+
model = None
|
108 |
def model_process(init_image, mask):
|
109 |
global model
|
110 |
|
|
|
118 |
# image, alpha_channel = load_img(origin_image_bytes)
|
119 |
# Origin image shape: (512, 512, 3)
|
120 |
original_shape = init_image.shape
|
121 |
+
interpolation = cv2.INTER_CUBIC
|
|
|
122 |
|
123 |
# form = request.form
|
124 |
|
|
|
160 |
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
161 |
# logger.info(f"Resized image shape: {image.shape}")
|
162 |
print(f"Resized image shape: {image.shape}")
|
163 |
+
|
164 |
+
if model is None:
|
165 |
+
return None
|
166 |
+
|
167 |
mask, _ = load_img(input["mask"].read(), gray=True)
|
168 |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
169 |
|
|
|
185 |
ext = get_image_ext(origin_image_bytes)
|
186 |
return ext
|
187 |
|
188 |
+
'''
|
189 |
model = ModelManager(
|
190 |
name='lama',
|
191 |
device=device,
|
|
|
227 |
'''
|
228 |
image = Image.fromarray(dict["image"])
|
229 |
mask = Image.fromarray(dict["mask"])
|
230 |
+
output1 = model_process(dict["image"], dict["mask"])
|
231 |
output = mask #output.images[0]
|
232 |
# output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
|
233 |
|