Spaces:
Running
Running
yizhangliu
commited on
Commit
•
ede9250
1
Parent(s):
8802f96
Update app.py
Browse files
app.py
CHANGED
@@ -71,10 +71,46 @@ def read_content(file_path):
|
|
71 |
content = f.read()
|
72 |
return content
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
model = None
|
75 |
|
76 |
-
def model_process(image, mask):
|
77 |
-
global model
|
78 |
|
79 |
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
|
80 |
# rotate image
|
@@ -116,13 +152,13 @@ def model_process(image, mask):
|
|
116 |
if config.sd_seed == -1:
|
117 |
config.sd_seed = random.randint(1, 999999999)
|
118 |
|
119 |
-
|
120 |
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
121 |
-
|
122 |
|
123 |
-
|
124 |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
125 |
-
|
126 |
|
127 |
if model is None:
|
128 |
return None
|
@@ -131,6 +167,19 @@ def model_process(image, mask):
|
|
131 |
torch.cuda.empty_cache()
|
132 |
|
133 |
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
return image # image
|
135 |
|
136 |
model = ModelManager(
|
@@ -139,7 +188,9 @@ model = ModelManager(
|
|
139 |
)
|
140 |
|
141 |
image_type = 'pil' # filepath'
|
142 |
-
def predict(input):
|
|
|
|
|
143 |
if image_type == 'filepath':
|
144 |
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
|
145 |
origin_image_bytes = read_content(input["image"])
|
@@ -152,25 +203,25 @@ def predict(input):
|
|
152 |
mask_pil = input['mask']
|
153 |
image = np.array(image_pil)
|
154 |
mask = np.array(mask_pil.convert("L"))
|
155 |
-
output = model_process(image, mask)
|
156 |
return output
|
157 |
|
158 |
css = '''
|
159 |
.container {max-width: 100%;margin: auto;padding-top: 1.5rem}
|
160 |
.output-image, .input-image, .image-preview {height: 600px !important;object-fit: contain}
|
|
|
161 |
#image_upload{min-height:610px}
|
162 |
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 620px}
|
163 |
#image_output{margin: 0 auto; text-align: center;width:640px}
|
164 |
-
#
|
165 |
-
#
|
166 |
-
#
|
167 |
-
#
|
168 |
-
#
|
169 |
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
|
170 |
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
|
171 |
.dark .footer {border-color: #303030}
|
172 |
.dark .footer>p {background: #0b0f19}
|
173 |
-
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
|
174 |
#image_upload .touch-none{display: flex}
|
175 |
@keyframes spin {
|
176 |
from {
|
@@ -180,40 +231,30 @@ css = '''
|
|
180 |
transform: rotate(360deg);
|
181 |
}
|
182 |
}
|
183 |
-
#share-btn-container {
|
184 |
-
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
|
185 |
-
}
|
186 |
-
#share-btn {
|
187 |
-
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
|
188 |
-
}
|
189 |
-
#share-btn * {
|
190 |
-
all: unset;
|
191 |
-
}
|
192 |
-
#share-btn-container div:nth-child(-n+2){
|
193 |
-
width: auto !important;
|
194 |
-
min-height: 0px !important;
|
195 |
-
}
|
196 |
-
#share-btn-container .wrap {
|
197 |
-
display: none !important;
|
198 |
-
}
|
199 |
'''
|
200 |
|
201 |
image_blocks = gr.Blocks(css=css)
|
202 |
with image_blocks as demo:
|
203 |
with gr.Group():
|
204 |
-
with gr.Box():
|
205 |
-
with gr.Row():
|
206 |
with gr.Column():
|
207 |
-
image = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}',
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
)
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
215 |
with gr.Column():
|
216 |
-
image_out = gr.Image(label="
|
217 |
-
|
|
|
218 |
|
219 |
-
image_blocks.launch()
|
|
|
71 |
content = f.read()
|
72 |
return content
|
73 |
|
74 |
+
def get_image_enhancer(scale = 2, device='cuda:0'):
|
75 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
76 |
+
from realesrgan import RealESRGANer
|
77 |
+
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
78 |
+
from gfpgan import GFPGANer
|
79 |
+
|
80 |
+
realesrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
|
81 |
+
num_block=23, num_grow_ch=32, scale=4
|
82 |
+
)
|
83 |
+
netscale = scale
|
84 |
+
|
85 |
+
model_realesrgan = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
|
86 |
+
upsampler = RealESRGANer(
|
87 |
+
scale=netscale,
|
88 |
+
model_path=model_realesrgan,
|
89 |
+
model=realesrgan_model,
|
90 |
+
tile=0,
|
91 |
+
tile_pad=10,
|
92 |
+
pre_pad=0,
|
93 |
+
half=False if device=='cpu' else True,
|
94 |
+
device=device
|
95 |
+
)
|
96 |
+
|
97 |
+
model_GFPGAN = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'
|
98 |
+
img_enhancer = GFPGANer(
|
99 |
+
model_path=model_GFPGAN,
|
100 |
+
upscale=scale,
|
101 |
+
arch='clean',
|
102 |
+
channel_multiplier=2,
|
103 |
+
bg_upsampler=upsampler,
|
104 |
+
device=device
|
105 |
+
)
|
106 |
+
return img_enhancer
|
107 |
+
|
108 |
+
image_enhancer = get_image_enhancer(scale = 1, device=device)
|
109 |
+
|
110 |
model = None
|
111 |
|
112 |
+
def model_process(image, mask, img_enhancer):
|
113 |
+
global model,image_enhancer
|
114 |
|
115 |
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
|
116 |
# rotate image
|
|
|
152 |
if config.sd_seed == -1:
|
153 |
config.sd_seed = random.randint(1, 999999999)
|
154 |
|
155 |
+
logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
|
156 |
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
157 |
+
logger.info(f"Resized image shape_1_: {image.shape}")
|
158 |
|
159 |
+
logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
|
160 |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
161 |
+
logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")
|
162 |
|
163 |
if model is None:
|
164 |
return None
|
|
|
167 |
torch.cuda.empty_cache()
|
168 |
|
169 |
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
|
170 |
+
|
171 |
+
if image_enhancer is not None and img_enhancer:
|
172 |
+
start = time.time()
|
173 |
+
input_img_rgb = np.array(image)
|
174 |
+
input_img_bgr = input_img_rgb[...,[2,1,0]]
|
175 |
+
_, _, enhance_img = image_enhancer.enhance(input_img_bgr, has_aligned=False,
|
176 |
+
only_center_face=False, paste_back=True)
|
177 |
+
input_img_rgb = enhance_img[...,[2,1,0]]
|
178 |
+
img_enhance = Image.fromarray(np.uint8(input_img_rgb))
|
179 |
+
image = img_enhance
|
180 |
+
log_info = f"image_enhancer_: {(time.time() - start) * 1000}ms, {res_np_img.shape} "
|
181 |
+
logger.info(log_info)
|
182 |
+
|
183 |
return image # image
|
184 |
|
185 |
model = ModelManager(
|
|
|
188 |
)
|
189 |
|
190 |
image_type = 'pil' # filepath'
|
191 |
+
def predict(input, img_enhancer):
|
192 |
+
if input is None:
|
193 |
+
return None
|
194 |
if image_type == 'filepath':
|
195 |
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
|
196 |
origin_image_bytes = read_content(input["image"])
|
|
|
203 |
mask_pil = input['mask']
|
204 |
image = np.array(image_pil)
|
205 |
mask = np.array(mask_pil.convert("L"))
|
206 |
+
output = model_process(image, mask, img_enhancer)
|
207 |
return output
|
208 |
|
209 |
css = '''
|
210 |
.container {max-width: 100%;margin: auto;padding-top: 1.5rem}
|
211 |
.output-image, .input-image, .image-preview {height: 600px !important;object-fit: contain}
|
212 |
+
#work-container {min-width: min(160px, 100%) !important;flex-grow: 0 !important}
|
213 |
#image_upload{min-height:610px}
|
214 |
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 620px}
|
215 |
#image_output{margin: 0 auto; text-align: center;width:640px}
|
216 |
+
#erase-container{margin: 0 auto; text-align: center;width:150px;border-width:5px;border-color:#2c9748}
|
217 |
+
#enhancer-checkbox{width:520px}
|
218 |
+
#enhancer-tip{width:450px}
|
219 |
+
#enhancer-tip-div{text-align: left}
|
220 |
+
#prompt-container{margin: 0 auto; text-align: center;width:fit-content;min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
|
221 |
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
|
222 |
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
|
223 |
.dark .footer {border-color: #303030}
|
224 |
.dark .footer>p {background: #0b0f19}
|
|
|
225 |
#image_upload .touch-none{display: flex}
|
226 |
@keyframes spin {
|
227 |
from {
|
|
|
231 |
transform: rotate(360deg);
|
232 |
}
|
233 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
'''
|
235 |
|
236 |
image_blocks = gr.Blocks(css=css)
|
237 |
with image_blocks as demo:
|
238 |
with gr.Group():
|
239 |
+
with gr.Box(elem_id="work-container"):
|
240 |
+
with gr.Row(elem_id="input-container"):
|
241 |
with gr.Column():
|
242 |
+
image = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}',
|
243 |
+
label="Upload(载入图片)", show_label=True).style(mobile_collapse=False)
|
244 |
+
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
|
245 |
+
with gr.Column(elem_id="erase-container"):
|
246 |
+
btn_erase = gr.Button(value = "Erase(擦除↓)",elem_id="erase_btn").style(
|
247 |
+
margin=True,
|
248 |
+
rounded=(True, True, True, True),
|
249 |
+
full_width=True,
|
250 |
+
).style(width=100)
|
251 |
+
with gr.Column(elem_id="enhancer-checkbox"):
|
252 |
+
enhancer_label = 'Enhanced image(processing is very slow, please check only for blurred images)【增强图像(处理很慢,请仅针对模糊图像做勾选)】'
|
253 |
+
img_enhancer = gr.Checkbox(label=enhancer_label).style(width=150)
|
254 |
+
with gr.Row(elem_id="output-container"):
|
255 |
with gr.Column():
|
256 |
+
image_out = gr.Image(label="Result", elem_id="image_output", visible=True).style(width=640)
|
257 |
+
|
258 |
+
btn_erase.click(fn=predict, inputs=[image, img_enhancer], outputs=[image_out])
|
259 |
|
260 |
+
image_blocks.launch()
|