import gradio as gr import PIL from PIL import Image import numpy as np import os import uuid import torch from torch import autocast import cv2 from io import BytesIO from matplotlib import pyplot as plt from torchvision import transforms import io import logging import multiprocessing import random import time import imghdr from pathlib import Path from typing import Union from loguru import logger from lama_cleaner.model_manager import ModelManager from lama_cleaner.schema import Config try: torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_nvfuser_enabled(False) except: pass from lama_cleaner.helper import ( load_img, numpy_to_bytes, resize_max_size, ) NUM_THREADS = str(multiprocessing.cpu_count()) # fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56 os.environ["KMP_DUPLICATE_LIB_OK"] = "True" os.environ["OMP_NUM_THREADS"] = NUM_THREADS os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS os.environ["MKL_NUM_THREADS"] = NUM_THREADS os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS if os.environ.get("CACHE_DIR"): os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"] HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD') device = "cuda" if torch.cuda.is_available() else "cpu" print(f'device = {device}') def get_image_ext(img_bytes): w = imghdr.what("", img_bytes) if w is None: w = "jpeg" return w def read_content(file_path): """read the content of target file """ with open(file_path, 'rb') as f: content = f.read() return content model = None def model_process(image, mask): global model original_shape = image.shape interpolation = cv2.INTER_CUBIC size_limit = 512 #1080 # "Original" if size_limit == "Original": size_limit = max(image.shape) else: size_limit = int(size_limit) config = Config( ldm_steps=25, ldm_sampler='plms', zits_wireframe=True, hd_strategy='Original', hd_strategy_crop_margin=196, hd_strategy_crop_trigger_size=1280, hd_strategy_resize_limit=2048, prompt='', use_croper=False, croper_x=0, croper_y=0, croper_height=512, croper_width=512, sd_mask_blur=5, sd_strength=0.75, sd_steps=50, sd_guidance_scale=7.5, sd_sampler='ddim', sd_seed=42, cv2_flag='INPAINT_NS', cv2_radius=5, ) if config.sd_seed == -1: config.sd_seed = random.randint(1, 999999999) print(f"Origin image shape_0_: {original_shape} / {image[250][250]} / {size_limit}") image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation) print(f"Resized image shape_1_: {image.shape} / {image[250][250]}") print(f"mask image shape_0_: {mask.shape} / {type(mask)} / {mask[250][250]}") mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation) print(f"mask image shape_1_: {mask.shape} / {type(mask)} / {mask[250][250]}") if model is None: return None res_np_img = model(image, mask, config) torch.cuda.empty_cache() image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png'))) return image # image model = ModelManager( name='lama', device=device, ) image_type = 'pil' # filepath' #'pil' def predict(input): if image_type == 'filepath': # input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'} origin_image_bytes = read_content(input["image"]) print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes)) image, _ = load_img(origin_image_bytes) mask, _ = load_img(read_content(input["mask"]), gray=True) elif image_type == 'pil': # input: {'image': pil, 'mask': pil} image_pil = input['image'] mask_pil = input['mask'] image = np.array(image_pil) mask = np.array(mask_pil.convert("L")) # output = mask_pil output = model_process(image, mask) return output css = ''' .container {max-width: 1150px;margin: auto;padding-top: 1.5rem} #image_upload{min-height:512px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 512px} #mask_radio .gr-form{background:transparent; border: none} #word_mask{margin-top: .75em !important} #word_mask textarea:disabled{opacity: 0.3} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } ''' image_blocks = gr.Blocks(css=css) with image_blocks as demo: with gr.Group(): with gr.Box(): with gr.Row(): with gr.Column(): image = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}', label="Upload").style(mobile_collapse=False, height=512) with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): btn_in = gr.Button("Done!").style( margin=True, rounded=(True, True, True, True), full_width=True, ) with gr.Column(): image_out = gr.Image(label="Output", elem_id="image_output", visible=True).style(height=512) btn_in.click(fn=predict, inputs=[image], outputs=[image_out]) image_blocks.launch()